scholarly journals Interaction of Microcracks and Tissue Compositional Heterogeneity in Determining Fracture Resistance of Human Cortical Bone

2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Ahmet Demirtas ◽  
Ani Ural

Recent studies demonstrated an association between atypical femoral fracture (AFF) and long-term bisphosphonate (BP) use for osteoporosis treatment. Due to BP treatment, bone undergoes alterations including increased microcrack density and reduced tissue compositional heterogeneity. However, the effect of these changes on the fracture response of bone is not well understood. As a result, the goal of the current study is to evaluate the individual and combined effects of microcracks and tissue compositional heterogeneity on fracture resistance of cortical bone using finite element modeling (FEM) of compact tension (CT) specimen tests with varying microcrack density, location, and clustering, and material heterogeneity in three different bone samples. The simulation results showed that an increase in microcrack density improved the fracture resistance irrespective of the local material property heterogeneity and microcrack distribution. A reduction in material property heterogeneity adversely affected the fracture resistance in models both with and without microcracks. When the combined changes in microcrack density and tissue material property heterogeneity representing BP treatment were evaluated, the models corresponding to BP-treated bone demonstrated reduced fracture resistance. The simulation results also showed that although microcrack location and clustering, and microstructure significantly influenced fracture resistance, the trends observed on the effect of microcrack density and tissue material property heterogeneity did not change. In summary, these results provide new information on the interaction of microcracks, tissue material property heterogeneity, and fracture resistance and may improve the understanding of the influence of mechanical changes due to prolonged BP use on the fracture behavior of cortical bone.

Biomaterials ◽  
2014 ◽  
Vol 35 (21) ◽  
pp. 5472-5481 ◽  
Author(s):  
Elizabeth A. Zimmermann ◽  
Bernd Gludovatz ◽  
Eric Schaible ◽  
Björn Busse ◽  
Robert O. Ritchie

Author(s):  
B. Bal ◽  
M. Koyama ◽  
D. Canadinc ◽  
G. Gerstein ◽  
H. J. Maier ◽  
...  

This paper presents a combined experimental and theoretical analysis focusing on the individual roles of microdeformation mechanisms that are simultaneously active during the deformation of twinning-induced plasticity (TWIP) steels in the presence of hydrogen. Deformation responses of hydrogen-free and hydrogen-charged TWIP steels were examined with the aid of thorough electron microscopy. Specifically, hydrogen charging promoted twinning over slip–twin interactions and reduced ductility. Based on the experimental findings, a mechanism-based microscale fracture model was proposed, and incorporated into a visco-plastic self-consistent (VPSC) model to account for the stress–strain response in the presence of hydrogen. In addition, slip-twin and slip–grain boundary interactions in TWIP steels were also incorporated into VPSC, in order to capture the deformation response of the material in the presence of hydrogen. The simulation results not only verify the success of the proposed hydrogen embrittlement (HE) mechanism for TWIP steels, but also open a venue for the utility of these superior materials in the presence of hydrogen.


2004 ◽  
Vol 819 ◽  
Author(s):  
Irina V. Belova ◽  
Graeme E. Murch

AbstractWe address the problem of calculating the long-time-limit effective diffusivity in stable two- phase polycrystalline material. A phenomenological model is used where the high diffusivity interphase boundaries are treated as connected “coatings” of the individual grains. Derivation of expressions for the effective diffusivity with segregation is made along Maxwell lines. Monte Carlo simulation using lattice-based random walks is used to test the validity of the expressions. It is shown that for the case analysed the derived expressions for the effective diffusivity are in very good agreement with simulation results. The equivalent of the Hart equation is also derived. It is shown to be in poor agreement with simulation results.


2021 ◽  
pp. 149-149
Author(s):  
Gaojie Liang ◽  
Lijun Liu ◽  
Haiqian Zhao ◽  
Cong Li ◽  
Nandi Zhang

In this study, droplet nucleation and jumping on the conical microstructure surface is simulated using the Lattice Boltzmann Method (LBM). The nucleation and jumping laws of the droplet on the surface are summarized. The numerical results suggest that the height and the gap of the conical microstructure exhibit a significant influence on the nucleation position of the droplet. When the ratio of height to the gap of the microstructure(H/D) is small, the droplet tends to nucleate at the bottom of the structure. Otherwise, the droplet tends to nucleate towards the side of the structure. The droplet grown in the side nucleation mode possesses better hydrophobicity than that of the droplet grown in the bottom nucleation mode and the droplet jumping becomes easier. Apart from the coalescence of the droplets jumping out of the surface, jumping of individual droplets may also occur under certain conditions. The ratio of the clearance to the width of the conical microstructure(D/F) depends on the jumping mode of the droplet. The simulation results indicate that when the D/F ratio is greater than 1.2, the coalescence jump of droplets is likely to occur. On the contrary, the individual jump of droplets is easy to occur.


Author(s):  
Michael Chrysostomou ◽  
Nicholas Christofides ◽  
Stelios Ioannou ◽  
Alexis Polycarpou

The rapid growth of the Information and Communications Technology (ICT) sector requires additional infrastructure, such as more micro-datacenters and telecom stations, to support the higher internet speeds and low latency requirements of 5G net-works. The increased power requirements of the new ICT technologies necessitate the proposal of new power supplies in an attempt to retain the increase in energy demand and running costs. This work provides an in-depth theoretical analysis on the losses of the individual stages of commercially available PSU and proposes a new multicell PSU, Buck-PFC converter, which offers a higher overall efficiency at varying load levels. The theoretical results are verified using simulation results, via PSIM Thermal Module, and using experimental data. The results indicate that multi-cell structures can improve the overall PSU ef-ficiency by 1.2% at 50% rated power and more than 2.1% at full power. Finally, taking into consideration the economic implica-tions of this study, it is shown that the proposed multicell structure may increase the PSU costs by 10.78% but the payback pe-riod is in the order of just 3.3 years.


2018 ◽  
Vol 120 (4) ◽  
pp. 1840-1858 ◽  
Author(s):  
Yue Dai ◽  
Yi Cheng ◽  
Brent Fedirchuk ◽  
Larry M. Jordan ◽  
Junhao Chu

Cat lumbar motoneurons display changes in membrane properties during fictive locomotion. These changes include reduction of input resistance and afterhyperpolarization, hyperpolarization of voltage threshold, and voltage-dependent excitation of the motoneurons. The state-dependent alteration of membrane properties leads to dramatic changes in frequency-current (F-I) relationship. The mechanism underlying these changes remains unknown. Using a motoneuron model combined with electrophysiological data, we investigated the channel mechanisms underlying the regulation of motoneuronal excitability and motor output. Simulation results showed that upregulation of transient sodium, persistent sodium, or Cav1.3 calcium conductances or downregulation of calcium-activated potassium or KCNQ/Kv7 potassium conductances could increase motoneuronal excitability and motor output through hyperpolarizing (left shifting) the F-I relationships or increasing the F-I slopes, whereas downregulation of input resistance or upregulation of potassium-mediated leak conductance produced the opposite effects. The excitatory phase of locomotor drive potentials (LDPs) also substantially hyperpolarized the F-I relationships and increased the F-I slopes, whereas the inhibitory phase of the LDPs had opposite effects to a similar extent. The simulation results also showed that none of the individual channel modulations could produce all the changes in the F-I relationships. The effects of modulation of Cav1.3 and KCNQ/Kv7 on F-I relationships were supported by slice experiments with the Cav1.3 agonist Bay K8644 and the KCNQ/Kv7 antagonist XE-991. The conclusion is that the varying changes in F-I relationships during fictive locomotion could be regulated by multichannel modulations. This study provides insight into the ionic basis for control of motor output in walking. NEW & NOTEWORTHY Mammalian spinal motoneurons have their excitability adapted to facilitate recruitment and firing during locomotion. Cat lumbar motoneurons display dramatic changes in membrane properties during fictive locomotion. These changes lead to a varying alteration of frequency-current relationship. The mechanisms underlying the changes remain unknown. In particular, little is known about the ionic basis for regulation of motoneuronal excitability and thus control of the motor output for walking by the spinal motor system.


Sign in / Sign up

Export Citation Format

Share Document