Discrete-Time Sliding Mode Controller With Time-Varying Band for Unfixed Sampling-Time Systems

Author(s):  
Chidentree Treesatayapun

An adaptive discrete-time controller is developed for a class of practical plants when the mathematical model is unknown and the sampling time is nonconstant or unfixed. The data-driven model is established by the set of plant's input–output data under the pseudo-partial derivative (PPD) which represents the change of output with respect to the change of control effort. The multi-input fuzzy rule emulated network (MiFREN) is utilized to estimate PPD with an online-learning phase to tune all adjustable parameters of MiFREN with the convergence analysis. The proposed control law is developed by the discrete-time sliding mode control (DSMC), and the time-varying band is established according to the unfixed sampling time and unknown boundaries of disturbances and uncertainties. The prototype of direct current-motor current control with uncontrolled-sampling time is constructed to validate the performance of the proposed controller.

Author(s):  
Chidentree Treesatayapun

An adaptive controller based on sliding mode condition is developed with estimated pseudopartial derivative (PPD) of data-driven scheme. The controlled plant is considered as a class of unknown discrete-time systems with only output feedback, which allows the proposed controller to be applicable for practical plants operated by computerization systems. The convergence of estimated PPD is analyzed by Lyapunov direct method under reasonable assumptions. The control law is derived by the estimated PPD and reaching condition of sliding surface as a model-free of controlled plant. The performance of the proposed control scheme is validated by theoretical analysis and experimental system with direct current (DC) motor current control.


2018 ◽  
Vol 2018 ◽  
pp. 1-9 ◽  
Author(s):  
J. V. V. Silva ◽  
L. F. P. Silva ◽  
I. Rubio Scola ◽  
V. J. S. Leite

The robust local stabilization of uncertain discrete-time systems with time-varying state delayed and subject to saturating actuators is investigated in this work. A convex optimization method is proposed to compute robust state feedback control law such that the uncertain closed-loop is locally asymptotically stable if the initial condition belongs to an estimate of the region of attraction for the origin. The proposed procedure allows computing estimates of the region of attraction through the intersection of ellipsoidal sets in an augmented space, reducing the conservatism of the estimates found in the literature. Also, the conditions can handle the amount of delay variation between two consecutive samples, which is new in the literature for the discrete-time case. Although the given synthesis conditions are delay dependent, the proposed control law is delay independent, yielding to easier real time implementations. A convex procedure is proposed to maximize the size of the set of safe initial conditions. Numerical examples are provided to illustrate the effectiveness of our approach and also to compare it with other conditions in the literature.


2018 ◽  
Vol 2018 ◽  
pp. 1-19
Author(s):  
Jiao-Jun Zhang ◽  
Hong-Sen Yan

Nonlinear time-varying systems without mechanism models are common in application. They cannot be controlled directly by the traditional control methods based on precise mathematical models. Intelligent control is unsuitable for real-time control due to its computation complexity. For that sake, a multidimensional Taylor network (MTN) based output tracking control scheme, which consists of two MTNs, one as an identifier and the other as a controller, is proposed for SISO nonlinear time-varying discrete-time systems with no mechanism models. A MTN identifier is constructed to build the offline model of the system, and a set of initial parameters for online learning of the identifier is obtained. Then, an ideal output signal is selected relative to the given reference signal. Based on the system identification model, Pontryagin minimum principle is introduced to obtain the numerical solution of the optimal control law for the system relative to the given ideal output signal, with the corresponding optimal output taken as the desired output signal. A MTN controller is generated automatically to fit the numerical solution of the optimal control law using the conjugate gradient (CG) method, and a set of initial parameters for online learning of the controller is obtained. An adaptive back propagation (BP) algorithm is developed to adjust the parameters of the identifier and controller in real time, and the convergence for the proposed learning algorithm is verified. Simulation results show that the proposed scheme is valid.


Energies ◽  
2021 ◽  
Vol 14 (13) ◽  
pp. 3811
Author(s):  
Katarzyna Adamiak ◽  
Andrzej Bartoszewicz

This study considers the problem of energetical efficiency in switching type sliding mode control of discrete-time systems. The aim of this work is to reduce the quasi-sliding mode band-width and, as follows, the necessary control input, through an application of a new type of time-varying sliding hyperplane in quasi-sliding mode control of sampled time systems. Although time-varying sliding hyperplanes are well known to provide insensitivity to matched external disturbances and uncertainties of the model in the whole range of motion for continuous-time systems, their application in the discrete-time case has never been studied in detail. Therefore, this paper proposes a sliding surface, which crosses the system’s representative point at the initial step and then shifts in the state space according to the pre-generated demand profile of the sliding variable. Next, a controller for a real perturbed plant is designed so that it drives the system’s representative point to its reference position on the sliding plane in each step. Therefore, the impact of external disturbances on the system’s trajectory is minimized, which leads to a reduction of the necessary control effort. Moreover, thanks to a new reaching law applied in the reference profile generator, the sliding surface shift in each step is strictly limited and a switching type of motion occurs. Finally, under the assumption of boundedness and smoothness of continuous-time disturbance, a compensation scheme is added. It is proved that this control strategy reduces the quasi-sliding mode band-width from O(T) to O(T3) order from the very beginning of the regulation process. Moreover, it is shown that the maximum state variable errors become of O(T3) order as well. These achievements directly reduce the energy consumption in the closed-loop system, which is nowadays one of the crucial factors in control engineering.


Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1882
Author(s):  
Piotr Leśniewski ◽  
Andrzej Bartoszewicz

In this paper, discrete time reaching law-based sliding mode control of continuous time systems is considered. In sliding mode control methods, usually the assumption of bounded absolute values of disturbances is used. However in many cases, the rate of change of the disturbance is also bounded. In the presented approach, this knowledge is used to improve the control precision and reduce the undesirable chattering. Another advantage of the proposed method is that the disturbance does not have to satisfy the matching conditions. In the paper two new reaching laws are analyzed, one of them ensures the switching quasi-sliding motion and the other the non-switching motion. For both of them, the robustness is assessed by calculating the quasi-sliding mode band width, as well as the greatest possible state error values. Specifically, the state errors are not considered only at the sampling instants, as is usual for discrete time systems, but the bounds on the continuous values “between” the sampling instants are also derived. Then, the proposed approaches are compared and analyzed with respect to energy expenditure of the control signal.


Sign in / Sign up

Export Citation Format

Share Document