scholarly journals Bridging Organ- and Cellular-Level Behavior in Ex Vivo Experimental Platforms Using Populations of Models of Cardiac Electrophysiology

Author(s):  
Carlos A. Ledezma ◽  
Benjamin Kappler ◽  
Veronique Meijborg ◽  
Bas Boukens ◽  
Marco Stijnen ◽  
...  

The inability to discern between pathology and physiological variability is a key issue in cardiac electrophysiology since this prevents the use of minimally invasive acquisitions to predict early pathological behavior. The goal of this work is to demonstrate how experimentally calibrated populations of models (ePoM) may be employed to inform which cellular-level pathologies are responsible for abnormalities observed in organ-level acquisitions while accounting for intersubject variability; this will be done through an exemplary computational and experimental approach. Unipolar epicardial electrograms (EGM) were acquired during an ex vivo porcine heart experiment. A population of the Ten Tusscher 2006 model was calibrated to activation–recovery intervals (ARI), measured from the electrograms, at three representative times. The distributions of the parameters from the resulting calibrated populations were compared to reveal statistically significant pathological variations. Activation–recovery interval reduction was observed in the experiments, and the comparison of the calibrated populations of models suggested a reduced L-type calcium conductance and a high extra-cellular potassium concentration as the most probable causes for the abnormal electrograms. This behavior was consistent with a reduction in the cardiac output (CO) and was confirmed by other experimental measurements. A proof of concept method to infer cellular pathologies by means of organ-level acquisitions is presented, allowing for an earlier detection of pathology than would be possible with current methods. This novel method that uses mathematical models as a tool for formulating hypotheses regarding the cellular causes of observed organ-level behaviors, while accounting for physiological variability has been unexplored.

2018 ◽  
Vol 38 (1) ◽  
pp. 87-96 ◽  
Author(s):  
Andreas Haeberlin ◽  
Klaus Schürch ◽  
Thomas Niederhauser ◽  
Romy Sweda ◽  
Marc P. Schneider ◽  
...  

Author(s):  
Keyan Peterson ◽  
Stephanie Coffman ◽  
Stacey Wolfe ◽  
Zhidan Xiang
Keyword(s):  
Ex Vivo ◽  

2021 ◽  
pp. 113831
Author(s):  
Vincent Gauthier ◽  
Alice Lemarquand ◽  
Emmanuel Caplain ◽  
Nicolas Wilkie-Chancellier ◽  
Stéphane Serfaty

2019 ◽  
Vol 58 (1) ◽  
pp. 100-106
Author(s):  
Suzanne R. Thibodeaux ◽  
Yvette C. Tanhehco ◽  
Leah Irwin ◽  
Lita Jamensky ◽  
Kevin Schell ◽  
...  

2010 ◽  
Vol 21 (10) ◽  
pp. 1573-1578 ◽  
Author(s):  
Joseph L. Farnam ◽  
Benjamin C. Smith ◽  
Brandon R. Johnson ◽  
Rodolfo Estrada ◽  
Theresa L. Edelman ◽  
...  

Author(s):  
Zhen Liu ◽  
Tao Cheng ◽  
Stephan Düwel ◽  
Ziying Jian ◽  
Geoffrey J. Topping ◽  
...  

Abstract Background Transpathology highlights the interpretation of the underlying physiology behind molecular imaging. However, it remains challenging due to the discrepancies between in vivo and in vitro measurements and difficulties of precise co-registration between trans-scaled images. This study aims to develop a multimodal intravital molecular imaging (MIMI) system as a tool for in vivo tumour transpathology investigation. Methods The proposed MIMI system integrates high-resolution positron imaging, magnetic resonance imaging (MRI) and microscopic imaging on a dorsal skin window chamber on an athymic nude rat. The window chamber frame was designed to be compatible with multimodal imaging and its fiducial markers were customized for precise physical alignment among modalities. The co-registration accuracy was evaluated based on phantoms with thin catheters. For proof of concept, tumour models of the human colorectal adenocarcinoma cell line HT-29 were imaged. The tissue within the window chamber was sectioned, fixed and haematoxylin–eosin (HE) stained for comparison with multimodal in vivo imaging. Results The final MIMI system had a maximum field of view (FOV) of 18 mm × 18 mm. Using the fiducial markers and the tubing phantom, the co-registration errors are 0.18 ± 0.27 mm between MRI and positron imaging, 0.19 ± 0.22 mm between positron imaging and microscopic imaging and 0.15 ± 0.27 mm between MRI and microscopic imaging. A pilot test demonstrated that the MIMI system provides an integrative visualization of the tumour anatomy, vasculatures and metabolism of the in vivo tumour microenvironment, which was consistent with ex vivo pathology. Conclusions The established multimodal intravital imaging system provided a co-registered in vivo platform for trans-scale and transparent investigation of the underlying pathology behind imaging, which has the potential to enhance the translation of molecular imaging.


2021 ◽  
Vol 12 ◽  
Author(s):  
Mia Levite

T cells are essential for eradicating microorganisms and cancer and for tissue repair, have a pro-cognitive role in the brain, and limit Central Nervous System (CNS) inflammation and damage upon injury and infection. However, in aging, chronic infections, acute SARS-CoV-2 infection, cancer, chronic stress, depression and major injury/trauma, T cells are often scarce, exhausted, senescent, impaired/biased and dysfunctional. People with impaired/dysfunctional T cells are at high risk of infections, cancer, other diseases, and eventually mortality, and become multi-level burden on other people, organizations and societies. It is suggested that “Nerve-Driven Immunity” and “Personalized Adoptive Neuro-Immunotherapy” may overcome this problem. Natural Neurotransmitters and Neuropeptides: Glutamate, Dopamine, GnRH-II, CGRP, Neuropeptide Y, Somatostatin and others, bind their well-characterized receptors expressed on the cell surface of naïve/resting T cells and induce multiple direct, beneficial, and therapeutically relevant effects. These Neurotransmitters and Neuropeptides can induce/increase: gene expression, cytokine secretion, integrin-mediated adhesion, chemotactic migration, extravasation, proliferation, and killing of cancer. Moreover, we recently found that some of these Neurotransmitters and Neuropeptides also induce rapid and profound decrease of PD-1 in human T cells. By inducing these beneficial effects in naïve/resting T cells at different times after binding their receptors (i.e. NOT by single effect/mechanism/pathway), these Neurotransmitters and Neuropeptides by themselves can activate, rejuvenate, and improve T cells. “Personalized Adaptive Neuro-Immunotherapy” is a novel method for rejuvenating and improving T cells safely and potently by Neurotransmitters and Neuropeptides, consisting of personalized diagnostic and therapeutic protocols. The patient’s scarce and/or dysfunctional T cells are activated ex vivo once by pre-selected Neurotransmitters and/or Neuropeptides, tested, and re-inoculated to the patient’s body. Neuro-Immunotherapy can be actionable and repeated whenever needed, and allows other treatments. This adoptive Neuro-Immunotherapy calls for testing its safety and efficacy in clinical trials.


2020 ◽  
Author(s):  
Caitlin A. Murphy ◽  
Matthew I. Banks

ABSTRACTBackgroundWhile their behavioral effects are well-characterized, the mechanisms by which anaesthetics induce loss of consciousness are largely unknown. Anaesthetics may disrupt integration and propagation of information in corticothalamic networks. Recent studies have shown that isoflurane diminishes synaptic responses of thalamocortical (TC) and corticocortical (CC) afferents in a pathway-specific manner. However, whether the synaptic effects of isoflurane observed in extracellular recordings persist at the cellular level has yet to be explored.MethodsHere, we activate TC and CC layer 1 inputs in non-primary mouse neocortex in ex vivo brain slices and explore the degree to which isoflurane modulates synaptic responses in pyramidal cells and in two inhibitory cell populations, somatostatin-positive (SOM+) and parvalbumin-positive (PV+) interneurons.ResultsWe show that the effects of isoflurane on synaptic responses and intrinsic properties of these cells varies among cell type and by cortical layer. Layer 1 inputs to L4 pyramidal cells were suppressed by isoflurane at both TC and CC synapses, while those to L2/3 pyramidal cells and PV+ interneurons were not. TC inputs to SOM+ cells were rarely observed at all, while CC inputs to SOM+ interneurons were robustly suppressed by isoflurane.ConclusionsThese results suggest a mechanism by which isoflurane disrupts integration and propagation of thalamocortical and intracortical signals.


Author(s):  
Meredith A. Redd ◽  
Sarah E. Scheuer ◽  
Natalie J. Saez ◽  
Yusuke Yoshikawa ◽  
Han Sheng Chiu ◽  
...  

Background: Ischemia-reperfusion injury (IRI) is one of the major risk factors implicated in morbidity and mortality associated with cardiovascular disease. During cardiac ischemia, the build-up of acidic metabolites results in decreased intracellular and extracellular pH that can reach as low as 6.0-6.5. The resulting tissue acidosis exacerbates ischemic injury and significantly impacts cardiac function. Methods: We used genetic and pharmacological methods to investigate the role of acid sensing ion channel 1a (ASIC1a) in cardiac IRI at the cellular and whole organ level. Human induced pluripotent stem cell derived cardiomyocytes (hiPSC-CMs) as well as ex vivo and in vivo models of IRI were used to test the efficacy of ASIC1a inhibitors as pre- and post-conditioning therapeutic agents. Results: Analysis of human complex trait genetics indicate that variants in the ASIC1 genetic locus are significantly associated with cardiac and cerebrovascular ischemic injuries. Using hiPSC-CMs in vitro and murine ex vivo heart models, we demonstrate that genetic ablation of ASIC1a improves cardiomyocyte viability after acute IRI. Therapeutic blockade of ASIC1a using specific and potent pharmacological inhibitors recapitulates this cardioprotective effect. We used an in vivo model of myocardial infarction (MI) and two models of ex vivo donor heart procurement and storage as clinical models to show that ASIC1a inhibition improves post-IRI cardiac viability. Use of ASIC1a inhibitors as pre- or post-conditioning agents provided equivalent cardioprotection to benchmark drugs, including the sodium-hydrogen exchange inhibitor zoniporide. At the cellular and whole organ level, we show that acute exposure to ASIC1a inhibitors has no impact on cardiac ion channels regulating baseline electromechanical coupling and physiological performance. Conclusions: Collectively, our data provide compelling evidence for a novel pharmacological strategy involving ASIC1a blockade as a cardioprotective therapy to improve the viability of hearts subjected to IRI.


Sign in / Sign up

Export Citation Format

Share Document