Thermal Performance Optimization in Electric Vehicle Power Trains by Locally Orthotropic Surface Layer Design

2018 ◽  
Vol 140 (11) ◽  
Author(s):  
Mario Petrovic ◽  
Tsuyoshi Nomura ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

In this paper, the application of orthotropic material orientation optimization for controlling heat flow in electric car power trains is presented. The design process is applied to a case model, which conducts heat while storing heat-sensitive electronic components. The core of the case is designed using a low thermal conductivity material on order to focus the heat flow into the surface layer, which is designed using a high thermal conductivity material. Material orthotropy is achieved in the surface layer of the case by removing the material at points determined by the optimization analysis. For this purpose, an orthotropic material orientation optimization method was extended to calculate optimal material distribution. This is achieved by transforming the initially obtained optimal orientation vector field into a scalar field through the use of coupled time-dependent nonisotropic Helmholtz equations. Multiple parameters allow the control of the scalar field and therefore the control over material distribution in accordance to the optimal orientation. This allows the material distribution pattern to be scaled depending on the desired manufacturing method. The analysis method is applied to divert heat flow from a specific section of the model while focusing the heat flow to another section. The results are shown for a model with a 0.1 mm thick surface layer of copper and are compared to those results from several other materials and layer thicknesses. Finally, the manufactured design is presented.

1970 ◽  
Author(s):  
A. E. Wechsler ◽  
E. M. Drake ◽  
F. E. Ruccia ◽  
J. E. McCullough ◽  
P. Felsenthal ◽  
...  

2017 ◽  
Vol 57 (2) ◽  
pp. 815-828 ◽  
Author(s):  
Mario Petrovic ◽  
Tsuyoshi Nomura ◽  
Takayuki Yamada ◽  
Kazuhiro Izui ◽  
Shinji Nishiwaki

2013 ◽  
Vol 577-578 ◽  
pp. 437-440
Author(s):  
Romana Piat ◽  
Yuriy Sinchuk

In this paper the development of a computational model for the thermal conductivity design for locally orthotropic materials is presented. The material orientation of a two-dimensional locally orthotropic solid subjected to thermal loads is designed for minimization of the local temperature. Two optimization problems are considered: the minimization of the highest (hot-spot) temperature and the minimization of the temperature according to the weights distribution. For both problems rules for calculation of the optimal material orientation are derived analytically. The analysis is based on the idea of the principal stresses method for optimization of material orientation in linear elasticity problems. The results of the analysis are implemented and the developed computational model is tested on an example of the lamella orientation optimization in a metal-ceramic composite.


1961 ◽  
Vol 39 (7) ◽  
pp. 1029-1039 ◽  
Author(s):  
M. J. Laubitz

A method is given for exact mathematical analysis of linear heat flow systems used in measuring thermal conductivity at high temperatures. It is shown that a popular version of such a system is very sensitive to the alignment of its components, which seriously limits the temperature range of its satisfactory use.


2021 ◽  
Author(s):  
Meryem Berrada ◽  
Richard Secco ◽  
Wenjun Yong

<p>Recent theoretical studies have tried to constrain Mercury’s internal structure and composition using thermal evolution models. The presence of a thermally stratified layer of Fe-S at the top of an Fe-Si core has been suggested, which implies a sub-adiabatic heat flow on the core side of the CMB. In this work, the adiabatic heat flow at the top of the core was estimated using the electronic component of thermal conductivity (k<sub>el</sub>), a lower bound for thermal conductivity. Direct measurements of electrical resistivity (ρ) of Fe-8.5wt%Si at core conditions can be related to k<sub>el</sub> using the Wiedemann-Franz law. Measurements were carried out in a 3000 ton multi-anvil press using a 4-wire method. The integrity of the samples at high pressures and temperatures was confirmed with electron-microprobe analysis of quenched samples at various conditions. Unexpected behaviour at low temperatures between 6-8 GPa may indicate an undocumented phase transition. Measurements of ρ at melting seem to remain constant at 127 µΩ·cm from 10-24 GPa, on both the solid and liquid side of the melting boundary. The adiabatic heat flow at the core side of Mercury’s core-mantle boundary is estimated between 21.8-29.5 mWm<sup>-2</sup>, considerably higher than most models of an Fe-S or Fe-Si core yet similar to models of an Fe core. Comparing these results with thermal evolution models suggests that Mercury’s dynamo remained thermally driven up to 0.08-0.22 Gyr, at which point the core became sub-adiabatic and stimulated a change from dominant thermal convection to dominant chemical convection arising from the growth of an inner core. Simply considering the internal structure of Mercury, these results support the capture of Mercury into a 3:2 resonance orbit during the thermally driven era of the dynamo.</p>


Sign in / Sign up

Export Citation Format

Share Document