Homogeneous–Heterogeneous Reactions of Blasius Flow in a Nanofluid

2018 ◽  
Vol 141 (2) ◽  
Author(s):  
Hang Xu

An investigation is made to study the Blasius flow of a nanofluid in the presence of homogeneous–heterogeneous chemical reactions. Here, the diffusion coefficients of the reactant and autocatalyst are considered to be in comparable sizes. The Buongiorno's mathematical model is applied in describing the behavior of nanofluids. Multiple solutions of the steady-state system of nonlinear ordinary differential equations are obtained. Results show that nanofluids significantly participate in the transport mechanism of the homogeneous–heterogeneous reactions, which play different roles in the procedures of homogeneous and heterogeneous reactions.

2016 ◽  
Vol 139 (3) ◽  
Author(s):  
Qingkai Zhao ◽  
Hang Xu ◽  
Longbin Tao

A mathematical model describing the homogeneous–heterogeneous reactions in the vicinity of the forward stagnation point of a cylinder immerged in a nanofluid is established. We assume that the homogeneous reaction is given by isothermal cubic autocatalator kinetics, while the heterogeneous reaction is chosen as first-order kinetics. The existence of multiple solutions through hysteresis bifurcations is discussed in detail for the various diffusion coefficients of reactant and autocatalyst.


2019 ◽  
pp. 388-388 ◽  
Author(s):  
Abd Mahdy ◽  
Fekry Hady ◽  
Hossam Nabwey

This paper establishes a mathematical analysis for describing the homogeneous and heterogeneous chemical reactions in the nearness of stagnation region of a sphere immersed in a single-phase nanofluid due to a Newtonian heating. The flow is resulted by an impulsively rotating sphere, and the nanofluid involves nanoparticles of Copper and Ferro. The available unsteady-states of the considered system are given in the case when the diffusion coefficients of both reactant and auto catalyst have the same size. The resulting non-linear dimensionless coupled partial differential equations in which governing the mixed convection flow have been tackled numerically via an implicit finite difference technique in combination with the quasi-linearization scheme. The similarities and differences in the behavior of physical pertinent fluid parameters have been elaborated and discussed graphically. It has been clarified that the nanofluid velocity and temperature profiles grow gradually by adding nanoparticles in the base fluid. Again it is noticed from present contribution that concentration of the nanofluid is decreases function by rising the strength of homogeneous and heterogeneous chemical reactions. Finally, numerical computations of the skin friction and heat transfer factors are presented.


Chemosphere ◽  
2019 ◽  
Vol 234 ◽  
pp. 608-617 ◽  
Author(s):  
Xue Qi ◽  
Xinglong Pang ◽  
Yi Hong ◽  
Yaliang Wang ◽  
Shengrong Lou ◽  
...  

AIChE Journal ◽  
1989 ◽  
Vol 35 (4) ◽  
pp. 625-634 ◽  
Author(s):  
Kareem I. Batarseh ◽  
Glenn P. Swaney ◽  
Alfred H. Stiller

Author(s):  
Pratibha L. Gai ◽  
Edward D. Boyes

Heterogeneous chemical reactions catalyzed over solid surfaces at operating temperatures are used to produce a vital part of energy, food, healthcare products, cleaner environments and chemicals.


BIOMATH ◽  
2017 ◽  
Vol 5 (2) ◽  
pp. 1612141 ◽  
Author(s):  
Nofe Al-Asuoad ◽  
Libin Rong ◽  
Sadoof Alaswad ◽  
Meir Shillor

The Middle East Respiratory Syndrome (MERS) has been identified in 2012 and since then outbreaks have been reported in various localities in the Middle East and in other parts of the world. To help predict the possible dynamics of MERS, as well as ways to contain it, this paper develops a mathematical model for the disease. It has a compartmental structure similar to SARS models and is in the form of a coupled system of nonlinear ordinary differential equations (ODEs). The model predictions are fitted to data from the outbreaks in Riyadh (Saudi Arabia) during 2013-2016. The results reveal that MERS will eventually be contained in the city. However, the containment time and the severity of the outbreaks depend crucially on the contact coefficients and the isolation rate constant. When randomness is added to the model coefficients, the simulations show that the model is sensitive to the scaled contact rate among people and to the isolation rate. The model is analyzed using stability theory for ODEs and indicates that when using only isolation, the endemic steady state is locally stable and attracting. Numerical simulations with parameters estimated from the city of Riyadh illustrate the analytical results and the model behavior, which may have important implications for the disease containment in the city. Indeed, the model highlights the importance of isolation of infected individuals and may be used to assess other control measures. The model is general and may be used to analyze outbreaks in other parts of the Middle East and other areas.


Author(s):  
Hassen M. Ouakad ◽  
Mohammad I. Younis

In this paper, we present a mathematical model and analysis for a microbeam fixed at one end and coupled to a microplate at its other end under the effect of capillary, shock and electrostatic forces. The model considers the microbeam as a flexible structure, the plate as a rigid body. First, we subject the system to capillary force via a drop of fluid which is trapped underneath the microplate. We derive closed-form solutions to the static and eigenvalue problems associated with the microbeam-microplate system. We then subject the system to shock loads for both case (capillary and electrostatic forces). The Galerkin procedure is used to derive a set of nonlinear ordinary-differential equations that describe the microsystem dynamics. We investigate the influence of the fluid volume ratio and the applied DC voltage on the microbeam response. We find that the effect of capillary force has much more dominant role compared to shock and electrostatic forces.


Sign in / Sign up

Export Citation Format

Share Document