scholarly journals Tonal Noise Prediction of a Modern Turbofan Engine With Large Upstream and Downstream Distortion

2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Majd Daroukh ◽  
Stéphane Moreau ◽  
Nicolas Gourdain ◽  
Jean-François Boussuge ◽  
Claude Sensiau

Ultra-high bypass ratio (UHBR) engines are designed as compact as possible and are characterized by a short asymmetric air inlet and heterogeneous outlet guide vanes (OGVs). The flow close to the fan is therefore circumferentially nonuniform (or distorted) and the resulting noise might be impacted. This is studied here at take-off conditions by means of a simulation of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations of a full-annulus fan stage. The model includes an asymmetric air inlet, a fan, heterogeneous OGVs, and homogeneous inlet guide vanes (IGVs). Direct acoustic predictions are given for both inlet and aft noises. A novel hydrodynamic/acoustic splitting method based on a modal decomposition is developed and is applied for the aft noise analysis. The noise mechanisms that are generally considered (i.e., interaction of fan-blade wakes with OGVs and fan self-noise) are shown to be impacted by the distortion. In addition, new sources caused by the interaction between the stationary distortion and the fan blades appear and contribute to the inlet noise.

Author(s):  
Huoxing Liu ◽  
Zhongfu Tang ◽  
Igor Shirokov

Abstract High bypass ratio turbofan engine is the dominant side of civil aviation engines market at present. This trendency will not change in the coming decades. In a turbofan engine with high thrust, high mass flow and high bypass ratio, the fan blade is the key component. But most investigations only focus on the individual part design and validation. As the multi-disciplines coupling research are more and more important. The systemlevel research will be an important investigation trend in the future. The purpose of this paper is the source design of the fan blade, which starts from the aircraft requirement and consists of the turbomachine design and operating parameters design. The main research area is from the inlet section of the engine to the outlet section of the fan rotor (single stage). So, different from the traditional axial compressor design, this paper also considers the overall operating parameters of the engine and organically combines the fan design with the overall engine design by the aerothermodynamic analysis. Based on the partial data of fan components of Russian PD-20 engine, The process, which consist of the overall performance design of the engine, fan components performance design, fan aerodynamic design and modeling, CFD method, flow field mechanism analysis, fluid-solid coupling, are formed into a simply systematical design of the fan blade. All the work except the CFD solver are programmed for the future research in propulsion system.


Author(s):  
Dipanjay Dewanji ◽  
G. Arvind Rao ◽  
Jos van Buijtenen

The soaring fuel price and the burgeoning environmental concerns have compelled global research towards cleaner engines, aimed at substantial reduction in emission, noise and fuel consumption. In this context, the present research investigates the feasibility of some novel engine concepts, namely Geared Turbofan and Intercooled Recuperated Turbofan concepts, by hypothetically applying them into an existing state-of-the-art high bypass ratio engine. This paper made an effort to estimate the effects on the baseline engine performances due to the introduction of these two concepts into it. By performing steady state simulations, it was found that the incorporation of the Geared Turbofan concept into the existing Turbofan engine caused a significant reduction in thrust specific fuel consumption, engine weight, and fan blade tip speed. However, when simulations were also carried out by incorporating the Intercooler and Recuperator concept in the baseline turbofan engine, it did not demonstrate any substantial improvement in fuel consumption. It was observed that the fuel flow rate was influenced to a large extent by heat exchanger’s effectiveness and the pressure drop within it. The overall engine weight was also found to get increased due to the inclusion of massive heat exchangers necessary for the system.


Author(s):  
George L. Converse ◽  
Donald K. Dunbar ◽  
Marlen L. Miller ◽  
Paul D. Hoskins ◽  
Scott M. Jones

A variable flow fan aircraft propulsion system offers the potential for achieving a low specific thrust with high flow and low jet velocity requirement as specified for takeoff, side-line noise, initial climb, and a high specific thrust requirement for climb and acceleration to supersonic cruise. These requirements are conflicting. To achieve this, the operating envelope of a variable flow fan has to be expanded over existing turbofan engines. The variable flow fan concept (i.e., the Variable Fan Exit or “VFX”) can efficiently operate beyond the usual fan (or compressor) stall operating line using novel methods of designing and scheduling the fan geometry as a function of flight Mach Number, fan pressure ratio and corrected speed. Fan geometry is altered by using variable inlet guide vanes (IGV’s), variable stators, and variable outlet guide vanes (OGV’s).


2017 ◽  
Vol 17 (17) ◽  
pp. 1-10
Author(s):  
Mostafa Samy ◽  
Mohamed Metwally ◽  
Wael Elmayyah ◽  
Ibrahem Elsherif

Water ◽  
2021 ◽  
Vol 13 (3) ◽  
pp. 344
Author(s):  
Le Thi Thu Hien ◽  
Nguyen Van Chien

The aim of this paper was to investigate the ability of some 2D and 3D numerical models to simulate flood waves in the presence of an isolated building or building array in an inundated area. Firstly, the proposed 2D numerical model was based on the finite-volume method (FVM) to solve 2D shallow-water equations (2D-SWEs) on structured mesh. The flux-difference splitting method (FDS) was utilized to obtain an exact mass balance while the Roe scheme was invoked to approximate Riemann problems. Secondly, the 3D commercially available CFD software package was selected, which contained a Flow 3D model with two turbulent models: Reynolds-averaged Navier-Stokes (RANs) with a renormalized group (RNG) and a large-eddy simulation (LES). The numerical results of an impact force on an obstruction due to a dam-break flow showed that a 3D solution was much better than a 2D one. By comparing the 3D numerical force results of an impact force acting on building arrays with the existence experimental data, the influence of velocity-induced force on a dynamic force was quantified by a function of the Froude number and the water depth of the incident wave. Furthermore, we investigated the effect of the initial water stage and dam-break width on the 3D-computed results of the peak value of force intensity.


Sign in / Sign up

Export Citation Format

Share Document