scholarly journals Variable Flow Turbofan Engine for an HSCT Application

Author(s):  
George L. Converse ◽  
Donald K. Dunbar ◽  
Marlen L. Miller ◽  
Paul D. Hoskins ◽  
Scott M. Jones

A variable flow fan aircraft propulsion system offers the potential for achieving a low specific thrust with high flow and low jet velocity requirement as specified for takeoff, side-line noise, initial climb, and a high specific thrust requirement for climb and acceleration to supersonic cruise. These requirements are conflicting. To achieve this, the operating envelope of a variable flow fan has to be expanded over existing turbofan engines. The variable flow fan concept (i.e., the Variable Fan Exit or “VFX”) can efficiently operate beyond the usual fan (or compressor) stall operating line using novel methods of designing and scheduling the fan geometry as a function of flight Mach Number, fan pressure ratio and corrected speed. Fan geometry is altered by using variable inlet guide vanes (IGV’s), variable stators, and variable outlet guide vanes (OGV’s).

2019 ◽  
Vol 26 (2) ◽  
pp. 61-68
Author(s):  
Robert Jakubowski

Abstract Current trends in the high bypass ratio turbofan engines development are discussed in the beginning of the paper. Based on this, the state of the art in the contemporary turbofan engines is presented and their change in the last decade is briefly summarized. The main scope of the work is the bypass ratio growth analysis. It is discussed for classical turbofan engine scheme. The next step is presentation of reach this goal by application of an additional combustor located between high and low pressure turbines. The numerical model for fast analysis of bypass ratio grows for both engine kinds are presented. Based on it, the numerical simulation of bypass engine increasing is studied. The assumption to carry out this study is a common core engine. For classical turbofan engine bypass ratio grow is compensated by fan pressure ratio reduction. For inter turbine burner turbofan, bypass grown is compensated by additional energy input into the additional combustor. Presented results are plotted and discussed. The main conclusion is drawing that energy input in to the turbofan aero engine should grow when bypass ratio is growing otherwise the energy should be saved by other engine elements (here fan pressure ratio is decreasing). Presented solution of additional energy input in inter turbine burner allow to eliminate this problem. In studied aspect, this solution not allows to improve engine performance. Specific thrust of such engine grows with bypass ratio rise – this is positive, but specific fuel consumption rise too. Classical turbofan reaches lower specific thrust for higher bypass ratio but its specific fuel consumption is lower too. Specific fuel consumption decreasing is one of the goal set for future aero-engines improvements.


Author(s):  
Chorng-Yow Chen ◽  
Mark H. Waters ◽  
Dimitri Mavris

Turbofan engines are designed with two or even three spools of fan- compressor and turbine combinations. This arrangement allows the possibility of increased power output by placing a second combustor between turbine spools. Such a combustor is called an “Intermediate Turbine Burner, ITB,” and in a twin spool turbofan engine the combustor would be placed between the discharge of the high pressure turbine and the entrance of the low pressure turbine. An evaluation of the mechanical design of an ITB integrated into a low bypass ratio mixed flow turbofan is the subject of this paper. It is well known that an engine with an ITB has increased specific thrust but at the expense of increased specific fuel consumption. To take advantage of the ITB potential, the choice of cycle parameters — fan pressure ratio, overall pressure ratio and bypass ratio must be evaluated, and recent studies have demonstrated that the turbofan cycle with an ITB should have increased fan and overall pressure ratios to maximize performance. However, little has been done to estimate the weight and dimensions of an ITB integrated engine including the weight, flow path area and length of the ITB. Of particular concern are the volume and resulting flow path area and length required for the ITB.


Author(s):  
Peng Wang ◽  
Mehrdad Zangeneh ◽  
Bryn Richards ◽  
Kevin Gray ◽  
James Tran ◽  
...  

Engine downsizing is a modern solution for the reduction of CO2 emissions from internal combustion engines. This technology has been gaining increasing attention from industry. In order to enable a downsized engine to operate properly at low speed conditions, it is essential to have a compressor stage with very good surge margin. The ported shroud, also known as the casing treatment, is a conventional way used in turbochargers to widen the working range. However, the ported shroud works effectively only at pressure ratios higher than 3:1. At lower pressure ratio, its advantages for surge margin enhancements are very limited. The variable inlet guide vanes are also a solution to this problem. By adjusting the setting angles of variable inlet guide vanes, it is possible to shift the compressor map toward the smaller flow rates. However, this would also undermine the stage efficiency, require extra space for installing the inlet guide vanes, and add costs. The best solution is therefore to improve the design of impeller blade itself to attain high aerodynamic performances and wide operating ranges. This paper reports a recent study of using inverse design method for the redesign of a centrifugal compressor stage used in an electric supercharger, including the impeller blade and volute. The main requirements were to substantially increase the stable operating range of the compressor in order to meet the demands of the downsized engine. The three-dimensional (3D) inverse design method was used to optimize the impeller geometry and achieve higher efficiency and stable operating range. The predicted performance map shows great advantages when compared with the existing design. To validate the computational fluid dynamics (CFD) results, this new compressor stage has also been prototyped and tested. It will be shown that the CFD predictions have very good agreement with experiments and the redesigned compressor stage has improved the pressure ratio, aerodynamic efficiency, choke, and surge margins considerably.


Author(s):  
A. R. Wadia ◽  
P. N. Szucs ◽  
D. W. Crall ◽  
D. C. Rabe

Previous experimental and analytical studies conducted to compare the performance of transonic swept rotors in single stage fans have demonstrated the potential of significant improvements in both efficiency and stall margin with forward swept blading. This paper extends the assessment of the payoff derived from forward sweep with respect to aerodynamic performance and stability to multistage configurations. The experimental investigation compares, on a back-to-back test basis, two builds of an advanced good efficiency, high pressure ratio, two-stage fan configuration tested alternately with a radial and a forward swept stage 1 blade. In the two-stage evaluations, the testing was extended to include the effect on inlet flow distortion. While the common second stage among the two builds prevented the overall fan from showing clean inlet performance and stability benefits with the forward swept rotor 1, this configuration did demonstrate superior front stage efficiency and tolerance to inlet distortion. Having obtained an already low distortion sensitivity with the radial rotor 1 configuration relative to current production military fan standards, the sensitivity to inlet distortion was halved with the forward swept rotor 1 configuration. In the case of the 180-degree one-per-rev distortion pattern, the two-stage configuration was evaluated both with and without inlet guide vanes (IGVs). The presence of the inlet guide vanes had a profound impact in lowering the two stage fan’s sensitivity with inlet distortion.


1970 ◽  
Author(s):  
W. C. Moffatt

This paper presents closed-form solutions for optimum compressor pressure ratio, bypass ratio and fan pressure ratio, given the turbine inlet temperature, component efficiencies and flight Mach number for a turbofan engine. In addition a simple procedure is outlined for obtaining the optimum combination of these quantities and a sample calculation is included. The optimum condition is defined as that which maximizes the specific thrust (thrust per pound per second of air flow through the gasifier) of the engine. The effects of differing gas properties in different portions of the engine are included in the analysis.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Majd Daroukh ◽  
Stéphane Moreau ◽  
Nicolas Gourdain ◽  
Jean-François Boussuge ◽  
Claude Sensiau

Ultra-high bypass ratio (UHBR) engines are designed as compact as possible and are characterized by a short asymmetric air inlet and heterogeneous outlet guide vanes (OGVs). The flow close to the fan is therefore circumferentially nonuniform (or distorted) and the resulting noise might be impacted. This is studied here at take-off conditions by means of a simulation of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations of a full-annulus fan stage. The model includes an asymmetric air inlet, a fan, heterogeneous OGVs, and homogeneous inlet guide vanes (IGVs). Direct acoustic predictions are given for both inlet and aft noises. A novel hydrodynamic/acoustic splitting method based on a modal decomposition is developed and is applied for the aft noise analysis. The noise mechanisms that are generally considered (i.e., interaction of fan-blade wakes with OGVs and fan self-noise) are shown to be impacted by the distortion. In addition, new sources caused by the interaction between the stationary distortion and the fan blades appear and contribute to the inlet noise.


Author(s):  
Yubao Tian ◽  
Yonghong Tang ◽  
Zhiheng Wang ◽  
Guang Xi

A shrouded centrifugal compressor model stage used for 120,000 m3/h oxygen production air separation unit was designed and tested at several IGV stagger angles from −15° to +60° and machine Mach number from 0.97 to 0.5. Present research works aimed to assess the influence of the adjustable IGVs and the IGV modeling on the shrouded centrifugal compressor performance characteristics and inlet flow field and to explore the effect factors of the CFD prediction accuracy and compressor stability at different IGV stagger angles. The measured results show that the model stage with 0° IGV stagger angle yields almost the same stagnation pressure ratio performance as the stage-only model but at a lower peak isentropic efficiency. With an appropriate IGV stagger angle setting ranging from −15° to +30°, the compressor stability could be efficiently enhanced. Numerical studies indicate that a large IGV hub gap may lead to a significant lag effect on the flow angle generated by the inlet guide vanes when increasing the IGV stagger angle.


Author(s):  
Linda Larsson ◽  
Anders Lundbladh ◽  
Tomas Grönstedt

Today many of the routes between small to medium sized airports and large hubs are operated by regional aircraft, powered by turboprop or turbofan engines. In the future the open rotor engine might provide an alternative option. The open rotor would combine the possibility of high cruise speed with high propulsive efficiency. Also, since the open rotor essentially is a turboprop with the possibility to fly fast, there is a benefit of high specific range at low cruising speeds, thus giving it a wide range cruise operation. In this paper a regional aircraft for 70 passengers and 3000 km range is studied. The aircraft is evaluated with both a counter rotating open rotor and a turbofan engine. Aircraft design parameters such as wing area and sweep are varied together with engine parameters such as engine power and propeller disc loading. Results show that the open rotor aircraft has a 17.0 % higher specific range at the optimal cruise Mach number compared to the turbofan aircraft. For higher speeds, at Mach 0.78, the difference is reduced to 15.0 %. The long range cruise Mach number is around Mach 0.7 for the open rotor aircraft while for the turbofan aircraft it is slightly higher, around Mach 0.72.


2002 ◽  
Vol 125 (1) ◽  
pp. 270-283 ◽  
Author(s):  
M. A. Mawid ◽  
T. W. Park ◽  
B. Sekar ◽  
C. Arana

The potential performance gain of utilizing pulse detonation combustion in the bypass duct of a turbofan engine for possible elimination of the traditional afterburner was investigated in this study. A pulse detonation turbofan engine concept without an afterburner was studied and its performance was assessed. The thrust, specific fuel consumption (SFC), and specific thrust of a conventional turbofan with an afterburner and the new pulse detonation turbofan engine concept were calculated and compared. The pulse detonation device performance in the bypass duct was obtained by using multidimensional CFD analysis. The results showed that significant performance gains can be obtained by using the pulse detonation turbofan engine concept as compared to the conventional afterburning turbofan engine. In particular, it was demonstrated that for a pulse detonation bypass duct operating at a frequency of 100 Hz and higher, the thrust and specific thrust of a pulse-detonation turbofan engine can nearly be twice as much as those of the conventional afterburning turbofan engine. SFC was also shown to be reduced. The effects of fuel-air mixture equivalence ratio and partial filling on performance were also predicted. However, the interaction between pulse detonation combustion in the bypass duct and the engine fan, for potential fan stall, and engine nozzle have not been investigated in this study.


Author(s):  
Xiaoyi Li ◽  
Lei Zhou ◽  
Jay Kapat ◽  
Louis C. Chow

A novel design for a high-speed, miniature centrifugal compressor for a miniature RTBC (reverse turbo Brayton cycle) cryogenic cooling system is the focus of this paper. Due to the geometrical restriction imposed by the cryocooling system, the outer radius of the compressor is limited to 2.5 cm. Such a small compressor must rotate at a high speed in order to provide an acceptable pressure ratio. Miniature design precludes the use of inducers with large angles. In order to compensate for the absence of conventional inducers, the proposed design uses inlet guide vanes (IGV) that produce preswirl at the impeller inlet. IGV is followed by a radial impeller and an axial diffuser. The design speed for this compressor is 313,000 rpm for an overall static-to-total pressure ratio of 1.7 with helium as the working fluid for the compressor and the cryocooling system. The analysis undertaken in this paper is for an aerodynamically similar design with air as the working fluid. The rotational speed is 108,000 rpm and the overall static-to-total pressure ratio of 1.55. This paper concentrates on computational prediction of the performance of the compressor. The three-dimensional transient simulation is performed by using sliding mesh model (SMM). Blade tip leakage is not considered in the computation presented here. The unsteady solution predicts the interaction between IGV and the impeller, and between the impeller and the diffuser. The isentropic efficiency of impeller is found to be 81% at the design point. Based on the results obtained in this study, the inlet angle of diffuser vanes is modified to match the gas flow at the impeller exit, resulting in an increase of the isentropic efficiency of diffuser from 8.6% to 74.8%. It is also found that the performance of upstream components — IGV and impeller, are not affected by the performance of the diffuser.


Sign in / Sign up

Export Citation Format

Share Document