Feasibility Study of Some Novel Concepts for High Bypass Ratio Turbofan Engines

Author(s):  
Dipanjay Dewanji ◽  
G. Arvind Rao ◽  
Jos van Buijtenen

The soaring fuel price and the burgeoning environmental concerns have compelled global research towards cleaner engines, aimed at substantial reduction in emission, noise and fuel consumption. In this context, the present research investigates the feasibility of some novel engine concepts, namely Geared Turbofan and Intercooled Recuperated Turbofan concepts, by hypothetically applying them into an existing state-of-the-art high bypass ratio engine. This paper made an effort to estimate the effects on the baseline engine performances due to the introduction of these two concepts into it. By performing steady state simulations, it was found that the incorporation of the Geared Turbofan concept into the existing Turbofan engine caused a significant reduction in thrust specific fuel consumption, engine weight, and fan blade tip speed. However, when simulations were also carried out by incorporating the Intercooler and Recuperator concept in the baseline turbofan engine, it did not demonstrate any substantial improvement in fuel consumption. It was observed that the fuel flow rate was influenced to a large extent by heat exchanger’s effectiveness and the pressure drop within it. The overall engine weight was also found to get increased due to the inclusion of massive heat exchangers necessary for the system.

2019 ◽  
Vol 26 (2) ◽  
pp. 61-68
Author(s):  
Robert Jakubowski

Abstract Current trends in the high bypass ratio turbofan engines development are discussed in the beginning of the paper. Based on this, the state of the art in the contemporary turbofan engines is presented and their change in the last decade is briefly summarized. The main scope of the work is the bypass ratio growth analysis. It is discussed for classical turbofan engine scheme. The next step is presentation of reach this goal by application of an additional combustor located between high and low pressure turbines. The numerical model for fast analysis of bypass ratio grows for both engine kinds are presented. Based on it, the numerical simulation of bypass engine increasing is studied. The assumption to carry out this study is a common core engine. For classical turbofan engine bypass ratio grow is compensated by fan pressure ratio reduction. For inter turbine burner turbofan, bypass grown is compensated by additional energy input into the additional combustor. Presented results are plotted and discussed. The main conclusion is drawing that energy input in to the turbofan aero engine should grow when bypass ratio is growing otherwise the energy should be saved by other engine elements (here fan pressure ratio is decreasing). Presented solution of additional energy input in inter turbine burner allow to eliminate this problem. In studied aspect, this solution not allows to improve engine performance. Specific thrust of such engine grows with bypass ratio rise – this is positive, but specific fuel consumption rise too. Classical turbofan reaches lower specific thrust for higher bypass ratio but its specific fuel consumption is lower too. Specific fuel consumption decreasing is one of the goal set for future aero-engines improvements.


2017 ◽  
Vol 139 (12) ◽  
Author(s):  
Syed J. Khalid

Cruise specific fuel consumption (SFC) of turbofan engines is a key metric for increasing airline profitability and for reducing CO2 emissions. Although increasing design bypass ratio (BPR) of separate exhaust turbofan configurations improves cruise SFC, further improvements can be obtained with online control actuated variable geometry modulations of bypass nozzle throat area, core nozzle throat area, and compressor variable vanes (CVV/CVG). The scope of this paper is to show only the benefits possible, and the process used in determining those benefits, and not to suggest any particular control algorithm for searching the best combination of the control effectors. A parametric cycle study indicated that the effector modulations could increase the cruise BPR, core efficiency, transmission efficiency, propulsive efficiency, and ideal velocity ratio resulting in a cruise SFC improvement of as much as 2.6% depending upon the engine configuration. The changes in these metrics with control effector variations will be presented. Scheduling of CVV is already possible in legacy digital controls; perturbation to this schedule and modulation of nozzle areas should be explored in light of the low bandwidth requirements at steady-state cruise conditions.


1978 ◽  
Author(s):  
William Sens

The anticipated commercial aircraft fuel usage through the year 2000 is divided into three categories: that which will be consumed by existing engines, new production of current type engines, and new turbofan engines with advanced technology. Means of improving fuel consumption of each of these engine categories will be reviewed and the potential fuel savings identified. The cycle selection and design characteristics of an advanced turbofan engine configuration will be discussed and the potential improvements in fuel consumption and economics identified.


Author(s):  
Xianghai Chai ◽  
Pinlian Han ◽  
Tongcheng Shi ◽  
Zhiqiang Wang

The wide-chord swept fan blade (WCSFB) has been extensively used in a advanced high bypass ratio turbofan engines. This paper explores the nature of WCSFB tip clearance. From the static analysis, it is found that the tip radial clearance at leading and trailing edge of WCSFB will be reduced with either bending or torsional deformation of the blade. And the change of the tip radial clearances varies with the twist angle. In this study, dynamic response of the WCSFB with different angular accelerations of the engine has been analyzed. It shows that when the angular acceleration of the fan rotor reaches a certain level, considerable bending and torsional deformation of the blade will occur, accompanied by the reduction of the tip radial clearance, which may lead to abnormal rubbing/impact between the blade tip and the casing. This may cause severe consequence for the blade and casing of the engine. The numerical simulation results show that the rubbing/impact between the WCSFB tip and the casing under angular acceleration loads can lead to local buckling of the tip leading edge of the blade, which will cause severe damage at the blade tip. Moreover, the influence of vibration and mass imbalance of the rotor on the fan blade tip clearance is also analyzed. In this paper, the results of a rig test under irregular acceleration for the WCSFB rotor is also presented, which validates the analytical results. The numerical simulation and test results will assist the blade tip clearance design to reflect the nature of the WCSFB under irregular acceleration to ensure safety.


2020 ◽  
pp. 15-23
Author(s):  
Олег Владимирович Кислов ◽  
Михаил Анатольевич Шевченко

A promising direction in aviation is the creation of anaircraft for supersonic cruise speeds (Mach 3...4). It is known that ramjet engines are more preferable for Mach numbers larger 3. However, they do not have starting thrust and uneconomical at subsonic flight speeds. At the same time, at subsonic flight speeds, turbofan engines are the most expedient. The combination of the positive properties of turbofan engines at subsonic speeds and a ramjet engines at supersonic speeds is possible by using duct-burning turbofan engine, which can operate at the ramjet mode with the blocked gas turbine duct at supersonic flight conditions. At this mode, duct-burning turbofan engine turns into ramjet engine, which, however, has special features due to the presence of fan in front of the combustion chamber, which operates in turbine mode or in zero power mode and also because of the outlet jet, which has annular shape, flows out from the duct causes the appearance of bottom drag. The presence of bottom drag requires both the development of a mathematical model for its calculation and taking into account its influence on the choice of the control law for the nozzle outlet area. The article presents a mathematical model of the working process of duct-burning turbofan engine at ramjet mode, taking into account the presence of fan in the flow path and bottom drug. Using the developed mathematical model, the regularities of changes in the internal and effective thrust, as well as the specific fuel consumption, depending on the relative fuel consumption and the critical section of the nozzle at a given altitude and flight speed are established. The critical section of the nozzle is the main regulating factor, and the relative fuel consumption is related to the main regulating factor - the fuel consumption. These patterns are useful for choosing a control program.There is such a combination of regulating factors whichprovides two extremes in the regularities of trust and specific fuel consumption changes: the mode of minimum specific fuel consumption and the mode of maximum thrust. In addition, the influence of gas underexpansion in the nozzle on the thrust-economic parameters of the engine and the required area of the nozzle outlet section were estimated. The obtained regularities are advisable to use when engine control program is chosen.


Author(s):  
John Williams ◽  
John B. Young

A theoretical approach for calculating the movement of liquid water following deposition onto a turbomachine rotor blade is described. Such a situation can occur during operation of an aero-engine in rain. The equation of motion of the deposited water is developed on an arbitrarily oriented plane triangular surface facet. By dividing the blade surface into a large number of facets and calculating the water trajectory over each one crossed in turn, the overall trajectory can be constructed. Apart from the centrifugal and Coriolis inertia effects, the forces acting on the water arise from the blade surface friction, and the aerodynamic shear and pressure gradient. Non-dimensionalisation of the equations of motion provides considerable insight and a detailed study of water flow on a flat rotating plate set at different stagger angles demonstrates the paramount importance of blade surface friction. The extreme cases of low and high blade friction are examined and it is concluded that the latter (which allows considerable mathematical generalisation) is the most likely in practice. It is also shown that the aerodynamic shear force, but not the pressure force, may influence the water motion. Calculations of water movement on a low-speed compressor blade and the fan blade of a high bypass ratio aero-engine suggest that in low rotational speed situations most of the deposited water is centrifuged rapidly to the blade tip region.


2019 ◽  
Vol 141 (2) ◽  
Author(s):  
Majd Daroukh ◽  
Stéphane Moreau ◽  
Nicolas Gourdain ◽  
Jean-François Boussuge ◽  
Claude Sensiau

Ultra-high bypass ratio (UHBR) engines are designed as compact as possible and are characterized by a short asymmetric air inlet and heterogeneous outlet guide vanes (OGVs). The flow close to the fan is therefore circumferentially nonuniform (or distorted) and the resulting noise might be impacted. This is studied here at take-off conditions by means of a simulation of the unsteady Reynolds-averaged Navier–Stokes (URANS) equations of a full-annulus fan stage. The model includes an asymmetric air inlet, a fan, heterogeneous OGVs, and homogeneous inlet guide vanes (IGVs). Direct acoustic predictions are given for both inlet and aft noises. A novel hydrodynamic/acoustic splitting method based on a modal decomposition is developed and is applied for the aft noise analysis. The noise mechanisms that are generally considered (i.e., interaction of fan-blade wakes with OGVs and fan self-noise) are shown to be impacted by the distortion. In addition, new sources caused by the interaction between the stationary distortion and the fan blades appear and contribute to the inlet noise.


Author(s):  
Huoxing Liu ◽  
Zhongfu Tang ◽  
Igor Shirokov

Abstract High bypass ratio turbofan engine is the dominant side of civil aviation engines market at present. This trendency will not change in the coming decades. In a turbofan engine with high thrust, high mass flow and high bypass ratio, the fan blade is the key component. But most investigations only focus on the individual part design and validation. As the multi-disciplines coupling research are more and more important. The systemlevel research will be an important investigation trend in the future. The purpose of this paper is the source design of the fan blade, which starts from the aircraft requirement and consists of the turbomachine design and operating parameters design. The main research area is from the inlet section of the engine to the outlet section of the fan rotor (single stage). So, different from the traditional axial compressor design, this paper also considers the overall operating parameters of the engine and organically combines the fan design with the overall engine design by the aerothermodynamic analysis. Based on the partial data of fan components of Russian PD-20 engine, The process, which consist of the overall performance design of the engine, fan components performance design, fan aerodynamic design and modeling, CFD method, flow field mechanism analysis, fluid-solid coupling, are formed into a simply systematical design of the fan blade. All the work except the CFD solver are programmed for the future research in propulsion system.


Author(s):  
Syed Khalid

Cruise specific fuel consumption (SFC) of turbofan engines is a key metric for increasing airline profitability and for reducing CO2 emissions. Although increasing design bypass ratio (BPR) of separate exhaust turbofan configurations improves cruise SFC, further improvements can be obtained with control actuated variable geometry modulations of core nozzle throat area, bypass nozzle throat area, and compressor variable vanes (CVV). The scope of this paper is to show only the benefits possible, and the process used in determining those benefits, and not to suggest any particular control algorithm for searching the best combination of the control effectors. A parametric cycle study indicated that the effector modulations could increase the cruise BPR, core efficiency, transmission efficiency, propulsive efficiency, and ideal velocity ratio resulting in a cruise SFC improvement of as much as 2.6% depending upon the engine configuration. The changes in these metrics with control effector variations will be presented. Modulation of CVV is already possible in legacy digital controls, and modulation of nozzle areas should be explored in light of the low bandwidth requirements at steady-state cruise conditions.


Author(s):  
Konrad Vogeler

ABB has designed a new family of industrial gasturbines for power generation using a Sequential Combustion Cycle (SCC) on a large single shaft engine. This concept allows considerable increase in power density and efficiency by only increasing pressure without raising the maximum hot gas temperature of the cycle. Instead a second combustion after an HP-turbine is used to reheat the gas before the final expansion in an LP-turbine. This concept is applied to the analysis of a high bypass ratio jet engine. In an engine with a single combustor, thrust is a function of bypass ratio and the combination of maximum pressure and temperature in the cycle. The proposed SCC allows increased thrust without pushing technology on materials and cooling. A modern twin spool engine is taken as reference. When total inlet massflow is kept constant, increasing bypass ratio decreases core mass flow. This limits the fuel flow for the HP-spool and hence total energy input to the engine. Introduction of the SCC gives another parameter of freedom to the cycle design. However the twin spool concept is now a disadvantage. The low fuel flow for the HP-spool due to high bypass ratio means there is not enough energy available to build up the necessary pressure for an economical expansion in the LP-turbine after the second combustion. Specific fuel consumption will be unacceptable. It is proposed to apply the SCC concept in a single spool engine with a geared fan. Both turbines can now support the compression. The fan is operated as a constant speed propeller with variable blade pitch. This engine concept allows for a given inlet massflow a substantially higher bypass ratio and hence decreases specific fuel consumption while specific thrust can be kept on a level which will be considerably higher than it would be in todays engines with comparable bypass ratio.


Sign in / Sign up

Export Citation Format

Share Document