The Effects of Bone Microstructure on Subsidence Risk for ALIF, LLIF, PLIF, and TLIF Spine Cages

2019 ◽  
Vol 141 (3) ◽  
Author(s):  
Vivek Palepu ◽  
Melvin D. Helgeson ◽  
Michael Molyneaux-Francis ◽  
Srinidhi Nagaraja

Several approaches (anterior, posterior, lateral, and transforaminal) are used in lumbar fusion surgery. However, it is unclear whether one of these approaches has the greatest subsidence risk as published clinical rates of cage subsidence vary widely (7–70%). Specifically, there is limited data on how a patient's endplate morphometry and trabecular bone quality influences cage subsidence risk. Therefore, this study compared subsidence (stiffness, maximum force, and work) between anterior (ALIF), lateral (LLIF), posterior (PLIF), and transforaminal (TLIF) lumbar interbody fusion cage designs to understand the impact of endplate and trabecular bone quality on subsidence. Forty-eight lumbar vertebrae were imaged with micro-ct to assess trabecular microarchitecture. micro-ct images of each vertebra were then imported into image processing software to measure endplate thickness (ET) and maximum endplate concavity depth (ECD). Generic ALIF, LLIF, PLIF, and TLIF cages made of polyether ether ketone were implanted on the superior endplates of all vertebrae and subsidence testing was performed. The results indicated that TLIF cages had significantly lower (p < 0.01) subsidence stiffness and maximum subsidence force compared to ALIF and LLIF cages. For all cage groups, trabecular bone volume fraction was better correlated with maximum subsidence force compared to ET and concavity depth. These findings highlight the importance of cage design (e.g., surface area), placement on the endplate, and trabecular bone quality on subsidence. These results may help surgeons during cage selection for lumbar fusion procedures to mitigate adverse events such as cage subsidence.

2015 ◽  
Vol 22 (3) ◽  
pp. 273-282 ◽  
Author(s):  
Srinidhi Nagaraja ◽  
Hassan K. Awada ◽  
Maureen L. Dreher ◽  
John T. Bouck ◽  
Shikha Gupta

OBJECT The aim in this study was to quantify the effects of vertebroplasty on endplate subsidence in treated and adjacent vertebrae and their relationship to endplate thickness and underlying trabecular bone in elderly female spines. METHODS Vertebral compression fractures were created in female cadaveric (age range 51–88 years) thoracolumbar spine segments. Specimens were placed into either the control or vertebroplasty group (n = 9/group) such that bone mineral density, trabecular microarchitecture, and age were statistically similar between groups. For the vertebroplasty group, polymethylmethacrylate bone cement was injected into the fractured vertebral body under fluoroscopy. Cyclic compression (685–1370 N sinusoid) was performed on all spine segments for 115,000 cycles. Micro-CT scans were obtained before and after cyclic loading to quantify endplate subsidence. Maximum subsidence was compared between groups in the caudal endplate of the superior adjacent vertebra (SVcau); cranial (TVcra) and caudal (TVcau) endplates of the treated vertebra; and the cranial endplate of the inferior adjacent vertebra (IVcra). In addition, micro-CT images were used to quantify average endplate thickness and trabecular bone volume fraction. These parameters were then correlated with maximum endplate subsidence for each endplate. RESULTS The maximum subsidence in SVcau endplate for the vertebroplasty group (0.34 ± 0.58 mm) was significantly (p < 0.05) greater than for the control group (−0.13 ± 0.27 mm). Maximum subsidence in the TVcra, TVcau, and IVcra endplates were greater in the vertebroplasty group, but these differences were not significant (p > 0.16). Increased subsidence in the vertebroplasty group manifested locally in the anterior region of the SVcau endplate and in the posterior region of the TVcra and TVcau endplates (p < 0.10). Increased subsidence was observed in thinner endplates with lower trabecular bone volume fraction for both vertebroplasty and control groups (R2 correlation up to 62%). In the SVcau endplate specifically, these 2 covariates aided in understanding subsidence differences between vertebroplasty and control groups. CONCLUSIONS Bone cement injected during vertebroplasty alters local biomechanics in elderly female spines, resulting in increased endplate disruption in treated and superior adjacent vertebrae. More specifically, bone cement increases subsidence in the posterior regions of the treated endplates and the anterior region of the superior caudal endplate. This increased subsidence may be the initial mechanism leading to subsequent compression fractures after vertebroplasty, particularly in vertebrae superior to the treated level.


2006 ◽  
Vol 321-323 ◽  
pp. 1070-1073
Author(s):  
Ye Yeon Won ◽  
Myong Hyun Baek ◽  
Wen Quan Cui ◽  
Kwang Kyun Kim

This study investigates micro-structural and mechanical properties of trabecular bone in human femoral head with and without osteoporosis using a micro-CT and a finite element model. 15 cored trabecular bone specimens with 20 of diameter were obtained from femoral heads with osteoporosis resected for total hip arthroplasty, and 5 specimens were removed from femoral head of cadavers, which has no history of musculoskeletal diseases. A high-resolution micro-CT system was used to scan each specimen to obtain histomorphometry indexes. Based on the micro-images, a FE-model was created to determine mechanical property indexes. While the non-osteoporosis group had increases the trabecular thickness, the bone volume, the bone volume fraction, the degree of anisotropy and the trabecular number compared with those of osteoporotic group, the non-osteoporotic group showed decreases in trabecular separation and structure model index. Regarding the mechanical property indexes, the reaction force and the Young's modulus were lower in the osteoporotic group than in non-osteoporotic group. Our data shows salient deteriorations in trabecular micro-structural and mechanical properties in human femoral head with osteoporosis.


2019 ◽  
Vol 12 (4-5) ◽  
pp. 1527-1534 ◽  
Author(s):  
M. Fernández-Martínez ◽  
◽  
Yolanda Guerrero-Sánchez ◽  
Pía López-Jornet ◽  

Author(s):  
T. Christy Bobby ◽  
Shwetha V. ◽  
Vijaya Madhavi

The stability of a dental implant is one of the most important aspects that decide the success rate of implant treatment. The stability is considerably affected by the strength of trabecular bone present in maxilla and mandible. Thus, finding of trabecular bone strength is a key component for the success of dental implants. The trabecular bone strength is usually assessed by quantity of bone in terms of bone mineral density (BMD). Recently, it has been revealed that along with quantity of bone, strength of the bone also depends on quality features commonly referred as trabecular bone microarchitecture. Since the quality of the trabecular bone is varying across the maxilla and mandible, preoperative assessment of trabecular bone microarchitecture at sub-region of maxilla and mandible are essential for stable implant treatment. Thus, in this chapter, the authors inscribe the quantitative analysis of trabecular bone quality in maxilla and mandible using CBCT images by employing contourlet transform.


2012 ◽  
Vol 27 (4) ◽  
pp. 749-759 ◽  
Author(s):  
Danielle E Green ◽  
Benjamin J Adler ◽  
Meilin E Chan ◽  
Clinton T Rubin

2020 ◽  
Vol 8 (7_suppl6) ◽  
pp. 2325967120S0035
Author(s):  
Christian Lattermann ◽  
Julia Charles ◽  
Shuichi Mizuno ◽  
Gergo Merkely

Objectives: Osteochondral allografts (OCA) are currently stored at 4˚C for an average of 24 days after procurement. However, chondrocyte viability, the major determinant of graft performance in-vivo, decreases and matrix integrity deteriorates with time under such conditions; for instance, chondrocyte viability falls below the acceptable level of 70% by 28 days. Hydrostatic pressure (HP) is a significant component in the mechanical loading environment and its application in vitro (0.5 - 15 MPa) elicited favorable effects on cartilage and bone. The purpose of this study was to investigate the effects of HP during osteochondral storage. Methods: Osteochondral (OC) explants (6x8 mm) were harvested from bovine humeral heads purchased from a local slaughterhouse (Fig. 1). OCs were randomly assigned to one of 4 groups: freshly harvested; stored at 4°C and atmospheric pressure (4˚C AP); stored at 37°C and AP (37˚C AP); and stored at 37°C with cyclic HP at 0-0.5 MPa, 0.5 Hz (37˚C HP). The explants were stored for 7, 14, 21, or 28 days in Dulbecco’s modified eagle medium/Ham’s nutrient mixture F12 (1:1), with antibiotics and with or without fetal bovine serum (FBS). Chondrocyte viability and density were assessed using LIVE/DEAD® staining in the entire tissue section and in the superficial, middle, and deep zones using the Image J program. In addition, we stained OC explants with safranin-O fast green; hematoxylin and eosin, sudan IV and antibodies against proliferating cell nuclear antigen (PCNA), keratan sulfate (KS). Furthermore, the microstructure and material composition of subchondral bone in the explants was quantified using micro-computed tomography (micro-CT, Scanco uCT 35) at a 12 micron nominal resolution. Results: Cartilage thickness was maintained at 37°C HP, significantly increased at 37°C AP and significantly decreased at 4°C AP (P < 0.05) with/without FBS at 28 days. Full-thickness chondrocyte viability was significantly higher at 21 and 28 days in the 37˚C HP group compared to 4°C or 37°C AP regardless of FBS (P<0.05). Specifically, chondrocyte viability in the superficial zone was maintained with 37˚C HP (Fig. 3) versus not in the other culture conditions. Cartilage matrices were similar between the conditions by 14 days (Fig. 4). However, surface fibrillation and degeneration were demonstrated in the 37 °C AP. KS seemed to be maintained in the superficial zone with HP by 28 days but decreased under other conditions (Fig. 5). More proliferating cells with 37°C HP were observed in the superficial zone compared to other conditions at 28 days. Utilization of FBS further increased the number of proliferating cells in each condition. The fatty granules were observed and distributed evenly throughout the subchondral bone and trabecular bone under all conditions at 28 days (Fig. 6). However, in the 4°C and 37°C AP groups, fewer fatty granules were observed in the subchondral bone and more fat in the trabecular bone (Fig. 6). Micro-CT evaluation revealed that the conditions produced similar tissue mineral density (Fig. 7). However, the trabecular number was significantly lower with 37°C AP compared to the other conditions (P<0.05). Conclusion: Osteochondral explants stored with 37°C HP maintained chondrocyte viability, histologically determined cartilage integrity, and subchondral bone quality. [Figure: see text]


2014 ◽  
Vol 29 (3) ◽  
pp. 608-617 ◽  
Author(s):  
Sonja Gamsjaeger ◽  
Wolfgang Brozek ◽  
Robert Recker ◽  
Klaus Klaushofer ◽  
Eleftherios P Paschalis

Sign in / Sign up

Export Citation Format

Share Document