Semi-Adaptive Closed-Loop Control for Infusion of Medications With Transport Delay in Clinical Effects

2019 ◽  
Vol 14 (10) ◽  
Author(s):  
Xin Jin ◽  
Chang-Sei Kim ◽  
Steven T. Shipley ◽  
Guy A. Dumont ◽  
Jin-Oh Hahn

Abstract This paper presents a semi-adaptive closed-loop control approach to autonomous infusion of medications exhibiting significant transport delay in clinical effects. The basic idea of the approach is to enable stable adaptive control of medication infusion by (1) incorporating transport delay explicitly into control design by way of a Padé approximation while (2) facilitating linear parameterization of control design model by desensitization of nonlinearly parameterized cooperativity constant associated with pharmacodynamics (PD). A novel dynamic dose–response model for control design is presented, in which the cooperativity constant exerts zero influence on the model output in the steady-state. Then, an adaptive pole placement control (APPC) technique was employed to fulfill adaptive control design in the presence of nonminimum phase dynamics associated with the Padé approximation of transport delay. The controller was evaluated in silico using a case study of regulating a cardiovascular variable with a sedative under a wide range of transport delay and pharmacological profiles. The results suggest that adaptation of transport delay and pharmacological characteristics may be beneficial in achieving consistent and robust regulation of medication-elicited clinical effects.

1997 ◽  
Vol 67 (8) ◽  
pp. 609-616 ◽  
Author(s):  
Ralph McGregor ◽  
Manpreet S. Arora ◽  
Warren J. Jasper

Closed-loop control of the dosing of dyes and chemicals is used to obtain an on-tone build-up of shade in dyeing polyamide fibers with a binary mixture of monosulfonated acid dyes. Computerized dosing pumps control the pH, the dyebath concentrations of the individual dyes, and the total sorption of each dye during the process. This real-time, closed-loop adaptive control yields good reproducibility and uniform shade build-up in a laboratory dyeing machine. It is possible to reuse a dyebath containing residual dyes and chemicals from a previous dyeing.


2020 ◽  
Vol 2020 ◽  
pp. 1-14
Author(s):  
Ali Hmidet ◽  
Olfa Boubaker

In this paper, a new design of a real-time low-cost speed monitoring and closed-loop control of the three-phase induction motor (IM) is proposed. The proposed solution is based on a voltage/frequency (V/F) control approach and a PI antiwindup regulator. It uses the Waijung Blockset which considerably alleviates the heaviness and the difficulty of the microcontroller’s programming task incessantly crucial for the implementation and the management of such complex applications. Indeed, it automatically generates C codes for many types of microcontrollers like the STM32F4 family, also used in this application. Furthermore, it offers a cost-effective design reducing the system components and increasing its efficiency. To prove the efficiency of the suggested design, not only simulation results are carried out for a wide range of variations in load and reference speed but also experimental assessment. The real-time closed-loop control performances are proved using the aMG SQLite Data Server via the UART port board, whereas Waijung WebPage Designer (W2D) is used for the web monitoring task. Experimental results prove the accuracy and robustness of the proposed solution.


Mathematics ◽  
2021 ◽  
Vol 9 (15) ◽  
pp. 1712
Author(s):  
Jožef Ritonja

The basic characteristic of batch bioreactors is their inability to inflow or outflow the substances during the fermentation process. This follows in the simple construction and maintenance, which is the significant advantage of batch bioreactors. Unfortunately, this characteristic also results in the inability of the current industrial and laboratory batch bioreactors to control fermentation production during the process duration. In some recent studies, it was shown that changing the temperature could influence the execution of the fermentation process. The presented paper shows that this phenomenon could be used to develop the closed-loop control system for the fermentation production control in batch bioreactors. First, based on theoretical work, experiments, and numerical methods, the appropriate structure of the mathematical model was determined and parameters were identified. Next, the closed-loop control system structure for batch bioreactor was proposed, and the linear and adaptive control system based on this structure and the derived and identified model were developed. Both modeling and adaptive control system design are new and represent original contributions. As expected, due to the non-linearity of the controlled plant, the adaptive control represents a more successful approach. The simulation and experimental results were used to confirm the applicability of the proposed solution.


2021 ◽  
Author(s):  
Ran Li ◽  
Xinan Zhang ◽  
Herbert Iu ◽  
Tat Kei Chau ◽  
Yulin Liu

2013 ◽  
Vol 56 (5) ◽  
pp. 1112-1118 ◽  
Author(s):  
ChunHua He ◽  
QianCheng Zhao ◽  
YuXian Liu ◽  
ZhenChuan Yang ◽  
GuiZhen Yan

Author(s):  
Pauli Mustalahti ◽  
Jouni Mattila

Hydraulic manipulators are extensively utilized to move heavy loads in many industrial tasks. In commercial applications, a manipulator base is required to rotate a motion range of the full 360°. This is usually implemented by using a hydraulic rack and pinion gear actuator. Due to the manipulator’s long reach and heavy loads, manipulator tip acceleration can produce significant torque to the rotation gear in free-space motion. Imposed by nonlinear dynamical behavior (involving, e.g., the gear backlash and actuator friction) added to high inertia, a system closed-loop control design becomes a challenging task. An advanced closed-loop control enables to increase the automation-level of hydraulic manipulators. This study designs a novel subsystem-dynamics-based controller for a hydraulic rack and pinion gear actuator utilizing the control design principles of the virtual decomposition control (VDC) approach. An adaptive backlash compensation is incorporated in the control design. Furthermore, the proposed controller is implemented in previously-designed state-of-the-art hydraulic manipulator control. The stability of the overall control design is proven. Experiments with a full-scale commercial hydraulic manipulator demonstrate the effectiveness of the proposed adaptive backlash compensation and the overall control performance.


Sign in / Sign up

Export Citation Format

Share Document