scholarly journals Comparing Slicing Technologies for Digital Light Processing Printing

Author(s):  
Tsz-Ho Kwok

In additive manufacturing (AM), slicing is a crucial step in process planning to convert a computer-aided design (CAD) model to a machine-specific format. Digital light processing (DLP) printing is an important AM process that has a good surface finish, high accuracy, and fabrication speed and is widely applied in many dental and engineering industries. However, as DLP uses images for fabrication different from other toolpath-based processes, its process planning is understudied. Therefore, the main goal of this paper is to study and compare the slicing technologies for DLP printing. Three slicing technologies are compared: contour, voxelization, and ray-tracing.

Author(s):  
Tsz-Ho Kwok

Abstract The process planning of a manufacturing method is the key to ensure the quality of the fabricated part. In Additive Manufacturing (AM), slicing is a crucial step in process planning to convert a Computer-Aided Design (CAD) model to a machine-specific format. If the slicing results were incorrect, the manufacturing quality would have no way to be assured. Therefore, it is important to understand the performance of different slicing technologies for AM. Digital Light Processing (DLP) printing is an important AM process that has a good surface finish, high accuracy and fabrication speed, and is widely applied in many dental and engineering industries. However, while most other AM processes are toolpath-based, as a process that uses images as the fabrication tool, the DLP printing has its process planning understudied. Therefore, the main goal of this paper is to study, compare and benchmark the slicing technologies for DLP printing. Three slicing technologies are compared: contour, voxelization, and ray-tracing. They are tested with some common defects in slicing, and their usage in computational resources is also reported. The summary and suggestion are given at the end.


2021 ◽  
Vol 11 (4) ◽  
pp. 145
Author(s):  
Nenad Bojcetic ◽  
Filip Valjak ◽  
Dragan Zezelj ◽  
Tomislav Martinec

The article describes an attempt to address the automatized evaluation of student three-dimensional (3D) computer-aided design (CAD) models. The driving idea was conceptualized under the restraints of the COVID pandemic, driven by the problem of evaluating a large number of student 3D CAD models. The described computer solution can be implemented using any CAD computer application that supports customization. Test cases showed that the proposed solution was valid and could be used to evaluate many students’ 3D CAD models. The computer solution can also be used to help students to better understand how to create a 3D CAD model, thereby complying with the requirements of particular teachers.


2021 ◽  
Vol 143 (11) ◽  
Author(s):  
Muhammad Hassan ◽  
Hussain Ahmed Tariq ◽  
Muhammad Anwar ◽  
Talha Irfan Khan ◽  
Asif Israr

Abstract This paper showcases the designing, fabrication, and performance evaluation of 90-deg alpha-type Stirling engine. The diameters of the hot and cold cylinder are 50 mm and 44 mm, respectively, with a stroke length of 70 mm. The computer-aided design (CAD) model is developed by keeping in mind the ease of manufacturing, maintenance, bearing replacements, and lubrication. After fabrication, the engine is tested by heating the hot cylinder with air as a working fluid. The engine delivered peak power of 155 watts at the temperature of 1123 K and 968 K for hot and cold cylinders, respectively. This developed prototype can be commissioned with the solar parabolic concentrator in the future based on the smooth operation while delivering power.


3D Printing ◽  
2017 ◽  
pp. 154-171 ◽  
Author(s):  
Rasheedat M. Mahamood ◽  
Esther T. Akinlabi

Laser additive manufacturing is an advanced manufacturing process for making prototypes as well as functional parts directly from the three dimensional (3D) Computer-Aided Design (CAD) model of the part and the parts are built up adding materials layer after layer, until the part is competed. Of all the additive manufacturing process, laser additive manufacturing is more favoured because of the advantages that laser offers. Laser is characterized by collimated linear beam that can be accurately controlled. This chapter brings to light, the various laser additive manufacturing technologies such as: - selective laser sintering and melting, stereolithography and laser metal deposition. Each of these laser additive manufacturing technologies are described with their merits and demerits as well as their areas of applications. Properties of some of the parts produced through these processes are also reviewed in this chapter.


2020 ◽  
Vol 36 ◽  
pp. 101554
Author(s):  
Wenjin Li ◽  
Gary Mac ◽  
Nektarios Georgios Tsoutsos ◽  
Nikhil Gupta ◽  
Ramesh Karri

Author(s):  
Kai Xu ◽  
Tsz-Ho Kwok ◽  
Yong Chen

Shape deformation is an important issue in additive manufacturing (AM) processes such as the projection-based Stereolithography. Volumetric shrinkage and thermal cooling during the photopolymerization process combined with other factors such as the layer-constrained building process lead to complex deformation that is difficult to predict and control. In this paper, a general reverse compensation method and related computation framework are presented to reduce the shape deformation of AM fabricated parts. During the reverse compensation process, the shape deformation is calculated based on physical measurements of shape deformation. A novel method for identifying the correspondence between the deformed shape and the given nominal computer-aided design (CAD) model is presented based on added markers. Accordingly, a new CAD model based on the shape deformation and related compensation is computed. The intelligently revised CAD model by going through the same building process can result in a fabricated part that is close to the nominal CAD model. Two test cases have been designed to demonstrate the effectiveness of the presented method and the related computation framework. The shape deformation in terms of L2- and L∞-norm based on measuring the geometric errors is reduced by 40–60%.


2009 ◽  
Vol 131 (12) ◽  
Author(s):  
Min Li ◽  
Y. F. Zhang ◽  
J. Y. H. Fuh ◽  
Z. M. Qiu

In product design, a large proportion of three-dimensional (3D) computer-aided design (CAD) models can be reused to facilitate future product development due to their similarities in function and shape. This paper presents a novel method that incorporates modeling knowledge into CAD model similarity assessment to improve the effectiveness of reuse-oriented retrieval. First, knowledge extraction is performed on archived feature-based CAD models to construct feature dependency directed acyclic graph (FDAG). Second, based on the FDAG subgraph decomposition, two useful component partitioning approaches are developed to extract simplified essential shapes and meaningful subparts from CAD models. Third, the extracted shapes and their FDAG subgraphs are indexed. Finally, the indexed shapes that are similar to user-sketched queries are retrieved to reuse, and FDAG information of the retrieved shapes is provided as redesign suggestions. Experimental results suggest that the incorporation of modeling knowledge greatly facilitates CAD model retrieval and reuse. Algorithm evaluations also show the presented method outperforms other 3D retrieval methods.


2005 ◽  
Vol 5 (4) ◽  
pp. 381-387 ◽  
Author(s):  
Zahed Siddique ◽  
Karunakar Boddu

In order to provide products that can be tailored to the need of the customer, it is necessary to integrate the customer into the design process. In this paper we present a mass customization computer-aided design (CAD) framework that helps to integrate the customer into the design of user-configurable products. A template approach, which considers both modularity and scaling, is utilized to concisely represent a CAD model of the entire family. The system accepts user selections and parameters to automatically create a CAD model of the customized product in real time and then shows the model to the user. The system is implemented using PRO/ENGINEER and demonstrated through customization of bicycle frames.


1980 ◽  
Vol 27 (5) ◽  
pp. 899-906 ◽  
Author(s):  
M.H. White ◽  
F. Van De Wiele ◽  
J.-P. Lambot

Sign in / Sign up

Export Citation Format

Share Document