Extended Camus Theory and Higher Order Conjugated Curves

2019 ◽  
Vol 11 (5) ◽  
Author(s):  
Cody Leeheng Chan ◽  
Kwun-Lon Ting

According to Camus’ theorem, for a single degree-of-freedom (DOF) three-body system with the three instant centers staying coincident, a point embedded on a body traces a pair of conjugated curves on the other two bodies. This paper discusses a fundamental issue not addressed in Camus’ theorem in the context of higher order curvature theory. Following the Aronhold–Kennedy theorem, in a single degree-of-freedom three-body system, the three instant centers must lie on a straight line. This paper proposes that if the line of the three instant centers is stationary (i.e., slide along itself) on the line of the instant centers, a point embedded on a body traces a pair of conjugated curves on the other two bodies. Another case is that if the line of the three instant centers rotates about a stationary point, the stationary point embedded on a body also traces a pair of conjugated curves on the other two bodies. The paper demonstrates the use of instantaneous invariants to synthesize such a three-body system leading to a conjugate curve-pair generation. It is a supplement or extension of Camus’ theorem. Camus’ theorem may be regarded as a special singular case, in which all three instant centers are coincident.

Author(s):  
Cody Leeheng Chan ◽  
Kwun-Lon Ting

Abstract According to Camus’ theorem, for a single DOF 3-body system with the three instant centers staying coincident, a point embedded on a body traces a pair of conjugated curves on the other two bodies. This paper discusses a fundamental issue not addressed in Camus’ theorem in the context of higher order curvature theory. Following the Aronhold-Kennedy theorem, in a single degree-of-freedom three-body system, the three instant centers must lie on a straight line. This paper proposes that if the line of the three instant centers is stationary (i.e. slide along itself), on the line of the instant centers a point embedded on a body traces a pair of conjugated curves on the other two bodies. Another case is that if the line of the three instant centers rotate about a stationary point, the stationary point embedded on the body also traces a pair of conjugated curves on the other two bodies. The paper demonstrates the use of instantaneous invariants to synthesize such a three-body system leading to a conjugate curve-pair generation. It is a supplement or extension of the Camus’ theorem. The Camus’ theorem may be regarded as a special singular case, in which all three instant centers are coincident.


1963 ◽  
Vol 67 (636) ◽  
pp. 799-803
Author(s):  
C. L. Kirk

SummaryThe response of an elastic system having a single degree of freedom, to a vibratory force whose waveform can be varied, is examined. The variable waveform is produced by a system of two pairs of unbalanced rotors in which one pair rotates at three times the speed of the other pair. The waveform depends on the frequency of excitation, the phasing of the rotors and the ratio of their amounts of unbalance. If the rotors are run at a speed at which the faster pair rotates above resonance while the slower pair rotates below resonance, a frequency is found at which the rate of change of amplitude with respect to frequency is zero. At this point, however, the waveform is quite sensitive to small changes in the frequency of excitation. If the rotor speeds cannot be maintained constant, and if stable vibration waveforms are required, it is necessary to run the slowest rotor well above the resonant frequency where both the amplitude and waveform will be virtually independent of frequency.


2004 ◽  
Vol 26 (2) ◽  
pp. 103-110
Author(s):  
Nguyen Duc Tinh

Higher order stochastic averaging method is widely used for investigating single-degree-of-freedom nonlinear systems subjected to white and coloured random noises.In this paper the method is further developed for two-degree-of-freedom systems. An application to a system with cubic damping is considered and the second approximation solution to the Fokker-Planck (FP) equation is obtained.


2021 ◽  
Vol 159 ◽  
pp. 104258
Author(s):  
Jeonghwan Lee ◽  
Lailu Li ◽  
Sung Yul Shin ◽  
Ashish D. Deshpande ◽  
James Sulzer

Sign in / Sign up

Export Citation Format

Share Document