Decoupling of Multiple Concurrent Faults for Diagnosing Coal Cutter Gearboxes: An Extensive Experimental Investigation With Multichannel Sensor Measurements

Author(s):  
Zhixiong Li ◽  
Fushun Liu ◽  
Shuaishuai Sun ◽  
Th. Sarkodie-Gyan ◽  
Weihua Li

Abstract Due to harsh operating environments in underground coal seams, the key components (e.g., gear pairs and bearings) in the power transmission systems of coal cutters suffer from extreme wear and functional damages. To guarantee the safe and reliable operation of the coal cutters, it is important to monitor the condition of their transmission systems and detect possible faults in a timely manner. A challenging task here is to diagnose multiple concurrent faults. A literature review indicates that the current interests lie on the decoupling of multiple co-existing faults and that the very limited work has been done to deal with the dependence/correlation between the fault signals. To address this issue, this work extends our previous work on gear crack detection using the bounded component analysis (BCA) and proposes an improved BCA-based approach for decoupling hybrid faults with high dependence/correlation in coal cutter transmission systems. The proposed approach incorporates the Vold–Kalman order tracking and spectral kurtosis into an improved BCA framework (OTBCA-SK). Owing to the uniform sampling of order tracking, the influence of background noise and rotational speed variation on vibration signals can be effectively reduced. Since BCA is capable of handling vibration sources that are statistically dependent, OTBCA-SK can decouple both independent and dependent source signals. As a result, the vibration sources excited by hybrid faults, although maybe dependent/correlated, can be fully decoupled into single-fault vibration source signals. Three specially designed case studies were used to evaluate the effectiveness of the proposed OTBCA-SK approach in decoupling hybrid gear faults. The analysis results demonstrate better performance of hybrid fault decoupling using OTBCA-SK than that of three representative techniques, i.e., Erdogan's BCA (E-BCA), joint approximate diagonalization of eigen matrices (JADE) and fast independent component analysis (FastICA). These case studies also suggest that the proposed OTBCA-SK approach can retain the physical meaning of the original vibration and is hence suitable for hybrid fault diagnosis in practical applications.

2014 ◽  
Vol 936 ◽  
pp. 2286-2290
Author(s):  
Ding Rui ◽  
Tang Jin ◽  
Wang Wei

To solve dynamic background extraction in complicated outdoor surveillance, a method of background extraction based on fast independent component analysis (FastICA) is presented. Since foreground regions and background in an image are considered to be independent, and background images in video show a high correlation coefficient, the method can directly recover the background signal without recover other source signals. In this paper, the principle of FastICA are introduced, and the detailed processes of the method and results are given, which show that the method can realize extracting background image .


Energies ◽  
2021 ◽  
Vol 14 (6) ◽  
pp. 1717
Author(s):  
Camilo Andrés Ordóñez ◽  
Antonio Gómez-Expósito ◽  
José María Maza-Ortega

This paper reviews the basics of series compensation in transmission systems through a literature survey. The benefits that this technology brings to enhance the steady state and dynamic operation of power systems are analyzed. The review outlines the evolution of the series compensation technologies, from mechanically operated switches to line- and self-commutated power electronic devices, covering control issues, different applications, practical realizations, and case studies. Finally, the paper closes with the major challenges that this technology will face in the near future to achieve a fully decarbonized power system.


Author(s):  
Neil Bates ◽  
David Lee ◽  
Clifford Maier

This paper describes case studies involving crack detection in-line inspections and fitness for service assessments that were performed based on the inspection data. The assessments were used to evaluate the immediate integrity of the pipeline based on the reported features and the long-term integrity of the pipeline based on excavation data and probabilistic SCC and fatigue crack growth simulations. Two different case studies are analyzed, which illustrate how the data from an ultrasonic crack tool inspection was used to assess threats such as low frequency electrical resistance weld seam defects and stress corrosion cracking. Specific issues, such as probability of detection/identification and the length/depth accuracy of the tool, were evaluated to determine the suitability of the tool to accurately classify and size different types of defects. The long term assessment is based on the Monte Carlo method [1], where the material properties, pipeline details, crack growth parameters, and feature dimensions are randomly selected from certain specified probability distributions to determine the probability of failure versus time for the pipeline segment. The distributions of unreported crack-related features from the excavation program are used to distribute unreported features along the pipeline. Simulated crack growth by fatigue, SCC, or a combination of the two is performed until failure by either leak or rupture is predicted. The probability of failure calculation is performed through a number of crack growth simulations for each of the reported and unreported features and tallying their respective remaining lives. The results of the probabilistic analysis were used to determine the most effective and economical means of remediation by identifying areas or crack mechanisms that contribute most to the probability of failure.


2013 ◽  
Vol 50 (4) ◽  
pp. 040101
Author(s):  
阮俊 Ruan Jun ◽  
杨成武 Yang Chengwu ◽  
阚瑞峰 Kan Ruifeng

2016 ◽  
Vol 52 (1-2) ◽  
pp. 103-111 ◽  
Author(s):  
Cheng Wang ◽  
Jianying Wang ◽  
Xiongming Lai ◽  
Bineng Zhong ◽  
Xiangyu Luo ◽  
...  

Author(s):  
Faiza Charfi ◽  
Ali Kraiem

A new automated approach for Electrocardiogram (ECG) arrhythmias characterization and classification with the combination of Wavelet transform and Decision tree classification is presented. The approach is based on two key steps. In the first step, the authors adopt the wavelet transform to extract the ECG signals wavelet coefficients as first features and utilize the combination of Principal Component Analysis (PCA) and Fast Independent Component Analysis (FastICA) to transform the first features into uncorrelated and mutually independent new features. In the second step, they utilize some decision tree methods currently in use: C4.5, Improved C4.5, CHAID (Chi - Square Automatic Interaction Detection) and Improved CHAID for the classification of ECG signals, which are taken, from the MIT-BIH database, including normal subjects and subjects affected by arrhythmia. The authors’ results suggest the high reliability and high classification accuracy of C4.5 algorithm with the bootstrap aggregation.


Sign in / Sign up

Export Citation Format

Share Document