Characterization of barite reserves in Nigeria for use as weighting agent in drilling fluid

2021 ◽  
Vol 11 (5) ◽  
pp. 2157-2178
Author(s):  
David Oluwasegun Afolayan ◽  
Adelana Rasak Adetunji ◽  
Azikiwe Peter Onwualu ◽  
Oghenerume Ogolo ◽  
Richard Kwasi Amankwah

AbstractSuccessful drilling operations are dependent on the properties of the drilling fluid used to drill wells. Barite is used as a weighting agent during the preparation of drilling fluid. Over the years, oil and gas industry in Nigeria has been depending mainly on imported barite for drilling operations, whereas the country has huge deposits of barite. There is the need to assess the properties of the locally sourced barite for their suitability in drilling fluid formulation. This study presents the local processing methods of barite and examines the crude and on-the-site processed barite’s physio-chemical properties. These parameters were compared with American Petroleum Institute and Department of Petroleum Resources standards. XRD results show that on-the-site beneficiated barite has 87.79% BaSO4, 6.66% silica, 0.03% total soluble salt, 1.39% Fe2O3, and 1.603% heavy metals. Chemical analysis indicated that the pH, moisture content, metallic content such as Ca, Pb, Zn, Mg, Cu, and Cd minerals, and extractable carbonates were within the standard specified for usage as a drilling fluid weighting agent. The analysed crude barite samples were basic, within the pH of 8.3 and 8.6. Locally processed barite has lower Fe, Pb, Cd, and Cu content compared to industrially accepted barite. The specific gravity increased from 4.02 ± 0.07 to 4.15 ± 0.13, and the hardness reduced potentially from 5 Mohr to 3.5 Mohr on the hardness scale. The amount of impurities was sufficiently low, and the specific gravity of the samples improved to meet the needs of any drilling operation and compare favourably with industrially accepted barite.

Energies ◽  
2021 ◽  
Vol 14 (7) ◽  
pp. 1950
Author(s):  
Monika Gajec ◽  
Ewa Kukulska-Zając ◽  
Anna Król

Significant amounts of produced water, spent drilling fluid, and drill cuttings, which differ in composition and characteristics in each drilling operation, are generated in the oil and gas industry. Moreover, the oil and gas industry faces many technological development challenges to guarantee a safe and clean environment and to meet strict environmental standards in the field of processing and disposal of drilling waste. Due to increasing application of nanomaterials in the oil and gas industry, drilling wastes may also contain nanometer-scale materials. It is therefore necessary to characterize drilling waste in terms of nanomaterial content and to optimize effective methods for their determination, including a key separation step. The purpose of this study is to select the appropriate method of separation and pre-concentration of silver nanoparticles (AgNPs) from drilling wastewater samples and to determine their size distribution along with the state of aggregation using single-particle inductively coupled plasma mass spectrometry (spICP-MS). Two AgNP separation methods were compared: centrifugation and cloud point extraction. The first known use of spICP-MS for drilling waste matrices following mentioned separation methods is presented.


2021 ◽  
Author(s):  
Emmanuel Ayodele ◽  
David Ekuma ◽  
Ikechukwu Okafor ◽  
Innocent Nweze

Abstract Drilling fluid are complex fluids consisting of several additives. These additives are added to enhance and control the rheological properties (such as viscosity, gel strength and yield point) of the mud. These properties are controlled for effective drilling of a well. This research work is focused on determining the rheological behavior of drilling mud using industry-based polymer and Irvingia Gabonensis (ogbono) as viscosifiers. Water based muds were formulated from the aforementioned locally sourced viscosifier and that of the conventional used viscosifier (Carboxylmetyl cellulose, CMC). Laboratory tests were carried out on the different muds formulated and their rheological properties (such as yield stress, shear stress, plastic viscosity and shear rate) are evaluated. The concentration of the viscosifiers were varied. The expected outcome of the research work aims at lowering the total drilling cost by reducing the importation of foreign polymer which promotes the development of local content in the oil and gas industry. The research compares the rheology of mud samples and the effect of varying the concentration (2g, 4g, 6g, 8g, and 10g) of both CMC and Ogbono and determining the changes in their rheological properties. The total volume of each mud sample is equivalent to 350ml which represent one barrel (42gal) in the lab. From the result, at concentration of 2g, the ogbono mud has a better rheology than the CMC mud, but at a concentration above 2g, CMC mud shows a better rheology than ogbono mud, that is, as the concentration of CMC is increased, the rheological properties of the mud increased while as the concentration of ogbono is increased the rheological properties decreased. The viscosity of the drilling fluid produced from the ogbono were lower than that of CMC, it could be used together with another local product such as cassava starch, offor or to further improve the rheology and then be a substitute to the conventional viscosifiers.


Author(s):  
E.A. Flik ◽  
◽  
Y.E. Kolodyazhnaya

The article assesses the environmental safety of drilling fluids that are currently widely used in the oil and gas industry. It shows active development of water-based drilling fluid systems using xanthan biopolymer.


2019 ◽  
Vol 20 (1) ◽  
pp. 248
Author(s):  
Nor Adzwa Binti Rosli ◽  
Wan Asma Ibrahim ◽  
Zulkafli Hassan ◽  
Azizul Helmi Bin Sofian

In this study, some approaches have been proposed to establish an alternative and option of brand-new compounds by using green sources that can minimize the environmental threat in the engineering application industry. Tannin, a chemical component extracted from plant origin, has the potential to bind with proteins and other polymers. The description of tannin can be amplified to cover a complete mass of constituents which give typical phenolic reactions, and hence, it has the properties to interact with the aqueous solution. The potential of tannin to associate allows its usability in the oil and gas industry. The aim of this review in this particular context will be emphasized the use of tannin in the implementation of drilling fluid, mercury removal, wastewater treatment, and corrosion inhibitor.


Author(s):  
Maria V Clavijo ◽  
Adriana M Schleder ◽  
Enrique Lopez Droguett ◽  
Marcelo R Martins

Currently, a Dynamic Position (DP) System is commonly used for offshore operations. However, DP failures may generate environmental and economic losses; thus, this paper presents the Reliability, Availability and Maintainability (RAM) analysis for two different generations of DP system (DP2 and DP3) used in drilling operations. In addition to the RAM analysis, the approach proposed herein considers the uncertainties present in the equipment failure data and provides more information about criticality equipment ratings and probability density functions (pdf) of the repair times. The reliability analysis shows that, for 3 months of operation, the total failure probability of the DP2 system is 1.52% whereas this probability for the DP3 system is only 0.16%. The results reveal that the bus-bar is the most critical equipment of the DP2 system, whereas the wind sensor represents the priority equipment in the DP3 system. Using 90% confidence level, each DP configuration was evaluated for a 1-year operation, finding a reliability mean equal to 70.39% and 86.77% for the DP2 system and the DP3 system, respectively. The DP2 system asymptotic availability tends to present a constant value of 99.98% whereas for the DP3 system, it tends to be 99.99%. Finally, the maintainability analysis allows concluding that the mean time for system repair is expected to be 3.6 h. This paper presents a logical pathway for analysts, operators, and reliability engineers of the oil and gas industry.


Author(s):  
Grethe O. Ose ◽  
Trygve J. Steiro

Abstract Integrated operations (IO) is an ongoing change process in the oil and gas industry. New technological opportunities enable working in new ways that involve an integration of onshore and offshore personnel. This paper analyzes the results of two rounds of data gathering in an onshore drilling support center, in terms of the development of resilience. The first round took place in 2004/2005 and the second in 2012. This study presents a framework for the analysis of resilience and has used the case company as a mean of testing the framework. Our findings indicate that the support center has taken a huge step in the direction of becoming more resilient. The drilling company has tested a number of designs and sizes of support centers, each of which has different pros and cons. For the drilling discipline to develop resilience, it is essential that the number of rigs supported by a center is not too large, as they must not become involved in too many rigs and drilling operations. Our findings also indicate that the suggested framework provides a good overall picture of the development of resilience in the case company.


2020 ◽  
Vol 142 (12) ◽  
Author(s):  
Abo Taleb T. Al-Hameedi ◽  
Husam H. Alkinani ◽  
Mohammed M. Alkhamis ◽  
Shari Dunn-Norman

Abstract Practically, to regulate filtration characteristics of drilling fluid, non-biodegradable materials used commonly have a high cost with side effects on personnel safety and the environment. Hence, eco-friendly additives are needed as an alternative to replace or at least support the commonly used filtration control agents. This experimental investigation examines the possibility of using date tree seeds’ powder (DTSP), as a new eco-friendly fluid loss agent. Under surface and sub-surface conditions (fresh and aged conditions), experiments were executed utilizing low-temperature and low-pressure (LTLP) and high-temperature and high-pressure (HTHP) American Petroleum Institute (API) filter press to comprehend the influence of DTSP on the seepage loss characteristics. The findings were compared with a commonly utilized chemical additive to regulate filtration characteristics of drilling fluid (low viscosity sodium carboxymethyl cellulose (CMC-LV)). Two concentrations of DTSP and CMC-LV were added separately to a reference fluid (RF) to understand the effect of concentration variations on filtration properties. The findings revealed that both DTSP and CMC-LV significantly improved the filtrate and the filter cake when comparing them with the RF under fresh and aged conditions. The findings for fresh conditions also showed that LTLP filtration measurements for CMC-LV additives had almost similar performance as DTSP additives, while HTHP filtration measurements exhibited that the two concentrations of DTSP additives were marginally better than those of CMC-LV additives. For aged conditions, CMC-LV additives were relatively more efficient than DTSP additives for LTLP filtration control experiments. However, DTSP additives were more efficient in improving the filtration characteristics as compared to CMC-LV additives for HTHP filtration control experiments. These results are in aid of shifting the oil and gas industry from using conventional harmful additives to using unconventional eco-friendly additives. This also helps in transforming unwanted food wastes into valuable commercial products, which can revolutionize the domestic and international industries and create new job opportunities, hence minimizing the total cost of drilling fluid and the wastes disposed to the environment.


Author(s):  
Ricardo de Lepeleire ◽  
Nicolas Rogozinski ◽  
Hank Rogers ◽  
Daniel Ferrari

Within the oil and gas industry, significant costs are often incurred by the operating company during the well-construction phase of drilling operations. Specifically, the operators cost to drill a well can cost tens or hundreds of millions of USD. One specific area where significant changes in drilling operations have occurred is in the offshore environment, specifically operations from mobile offshore drilling units (MODUs). With the ever-increasing demand for oil and gas, operators globally have increased drilling budgets in an effort to meet forecasted demand. However, the increased budgets are often eroded or offset by increasing drilling costs. Therefore, operators are continually in search of new technology, processes, or procedures to help improve drilling operations and overall operational efficiencies. One Latin America operator identified a common operation as a possible area where operational cost could be easily reduced through the implementation of systems that allow the manipulation of valve manifolds remotely. Additionally, operating such valve manifolds remotely enhanced operational safety for personnel, which was an equally important consideration. This paper details the evaluation of existing equipment and procedures and a process used to develop a new remote-control system using a machine logic control (MLC) that has been designed, built, tested, and deployed successfully on MODUs operating in Latin America.


2018 ◽  
Vol 7 (1) ◽  
pp. 100
Author(s):  
Foster Gomado ◽  
Forson Kobina ◽  
Augustus Owusu Boadi ◽  
Yussif Moro Awelisah

The superb rheological features of bentonites makes them an excellent candidate in drilling operations. Its capacity of bentonite to swell and extend to a few times its unique volume gives it the gelling and viscosity controlling quality. The execution of clay or specifical bentonite as a great consistency controlling operator in drilling fluids largely depends on the great extent of its rheological conduct. Ghana as of late found oil and it has tossed a test to research to explore the utilization of local materials in the oil and gas operations. A rheological study was conducted on local clay samples from Ajumako, Saltpond and Winneba in the Central district of Ghana as a viscosifier in drilling muds. This will help to improve the local content of Ghana's oil and gas industry. Drilling muds were prepared from the samples in addition to a control mud using imported non-treated bentonite. The local clay samples were subjected rheological test where the flow behavior of the muds was determined by measuring the gel strength, plastic viscosity, and the yield point. The experimental values were compared to the API standards. It was revealed that the local clay had some potential features of bentonite and could be utilized as controlling operators in drilling fluids provided the clays are beneficiated to enhance their rheological properties. This novel tend to improve the local content in oil and gas industry in Ghana through the deployment of the local materials in oil and gas operations in the nation.


2021 ◽  
Author(s):  
Mario A. Rivas ◽  
Andres A. Ramirez ◽  
Bader S. Al-Zahrani ◽  
Khaled K. Abouelnaaj

Abstract One of the major challenges the Oil and Gas Industry faces nowadays during drilling operations is the twist-offs on Bottom Hole Assembly (BHA) components such as Drilling Jars, Shock Tools, Mud Motors, Roller Reamers, Stabilizers, Drill Collars, PBLs, Heavy Weight Drill Pipe (HWDP), Drill Pipe (DP), etc. To overcome this challenge, an initiative was proposed by performing a study based on twist-offs experienced on BHA components while drilling operations and recommendations are provided to reduce and eliminate twist-offs related to drilling with suboptimal drilling parameters. The statistical data for the twist-off events was collected coming from Daily Drilling Reports, and the analysis was limited to all wells which presented twist-offs on the drillstring and BHA components. Three examples of twist-offs due to drilling with erratic torque are discussed as well as a successful example of drilling parameters optimization. The three examples which presented drillstring and BHA twist-offs were analyzed using available BHA Dynamics and vibrations software and it was discovered that the parameters utilized (operational RPM) fell within the critical zone shearing force peaks (resonance vibrations). The components with the most twist-offs were identified. The hole size where we have the most twist-offs were also identified, which will help in focusing on these areas for the recommendations provided. This analysis will help Drilling Engineers and Foremen to foresee vibration dysfunctions and act accordingly by the use of available BHA Dynamics software in order to optimize drilling parameters before and during drilling. By drilling within a safe operating RPM window (away from resonant RPM), there will be reduction in the number of twist-offs and associated lost time.


Sign in / Sign up

Export Citation Format

Share Document