Analysis and Optimization of Staggered Partial Diffuser Vanes in a Centrifugal Pump

2020 ◽  
Vol 142 (5) ◽  
Author(s):  
Hyeon-Seok Shim ◽  
Sang-Hoon Kim ◽  
Kwang-Yong Kim

Abstract A performance analysis and three-objective design optimization were performed for the staggered partial diffuser vanes in a centrifugal pump using three-dimensional Reynolds-averaged Navier–Stokes equations. First, the performance of the diffuser vanes was evaluated for four different arrangements: full-height diffuser vanes, vaneless diffuser, half vanes attached to the hub, half vanes attached to the shroud, and staggered vanes attached alternately to the hub and the shroud. The staggered partial diffuser vanes were optimized using the following design variables: the installation angle of the vanes, the heights of the vanes attached to the hub and shroud, and the angle of rotation of the straight part on the pressure surface of the vanes. The objective functions were the hydraulic efficiency, the flowrate of the maximum pressure recovery, and the operating range of the diffuser. The Kriging model was used to construct surrogate models of the objective functions based on the results at the design points obtained by Latin hypercube sampling. The Pareto-optimal solutions were obtained by a multi-objective genetic algorithm (MOGA). The representative Pareto-optimal solutions for the staggered diffuser vanes obtained by the K-means clustering showed the improved performances in terms of both the hydraulic performance and operating range compared with the full-height diffuser vanes and the baseline design.

2020 ◽  
Vol 2020 ◽  
pp. 1-23 ◽  
Author(s):  
Jiuyuan Huo ◽  
Liqun Liu

Parameter optimization of a hydrological model is intrinsically a high dimensional, nonlinear, multivariable, combinatorial optimization problem which involves a set of different objectives. Currently, the assessment of optimization results for the hydrological model is usually made through calculations and comparisons of objective function values of simulated and observed variables. Thus, the proper selection of objective functions’ combination for model parameter optimization has an important impact on the hydrological forecasting. There exist various objective functions, and how to analyze and evaluate the objective function combinations for selecting the optimal parameters has not been studied in depth. Therefore, to select the proper objective function combination which can balance the trade-off among various design objectives and achieve the overall best benefit, a simple and convenient framework for the comparison of the influence of different objective function combinations on the optimization results is urgently needed. In this paper, various objective functions related to parameters optimization of hydrological models were collected from the literature and constructed to nine combinations. Then, a selection and evaluation framework of objective functions is proposed for hydrological model parameter optimization, in which a multiobjective artificial bee colony algorithm named RMOABC is employed to optimize the hydrological model and obtain the Pareto optimal solutions. The parameter optimization problem of the Xinanjiang hydrological model was taken as the application case for long-term runoff prediction in the Heihe River basin. Finally, the technique for order preference by similarity to ideal solution (TOPSIS) based on the entropy theory is adapted to sort the Pareto optimal solutions to compare these combinations of objective functions and obtain the comprehensive optimal objective functions’ combination. The experiments results demonstrate that the combination 2 of objective functions can provide more comprehensive and reliable dominant options (i.e., parameter sets) for practical hydrological forecasting in the study area. The entropy-based method has been proved that it is effective to analyze and evaluate the performance of different combinations of objective functions and can provide more comprehensive and impersonal decision support for hydrological forecasting.


Author(s):  
Jin-Hyuk Kim ◽  
Kyung-Hun Cha ◽  
Kwang-Yong Kim

A multi-objective optimization of a sirocco fan for residential ventilation has been carried out in the present work. A hybrid multi-objective evolutionary algorithm combined with response surface approximation is applied to optimize the total-to-total efficiency and total pressure rise of the sirocco fan for residential ventilation. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume method and solved on hexahedral grids for the flow analysis. Numerical results are validated with the experimental data for the total-to-total efficiency and total pressure. The total-to-total efficiency and total pressure rise of the sirocco fan are used as objective functions for the optimization. In order to improve the total-to-total efficiency and total pressure rise of the sirocco fan, four variables defining the scroll cut-off angle, scroll diffuser expansion angle, hub ratio and the blade exit angle, respectively, are selected as the design variables in this study. Latin-hypercube sampling as design-of-experiments is used to generate the design points within the design space. A fast non-dominated sorting genetic algorithm with an ε–constraint strategy for the local search is applied to determine the global Pareto-optimal solutions. The trade-off between two objectives is determined and discussed with respect to the representative clustered optimal solutions in the Pareto-optimal solutions compared to the reference shape.


2001 ◽  
Vol 25 (9) ◽  
pp. 621-628
Author(s):  
Fatma M. Ali

A new method for obtaining sensitivity information for parametric vector optimization problems(VOP)vis presented, where the parameters in the objective functions and anywhere in the constraints. This method depends on using differential equations technique for solving multiobjective nonlinear programing problems which is very effective in finding many local Pareto optimal solutions. The behavior of the local solutions for slight perturbation of the parameters in the neighborhood of their chosen initial values is presented by using the technique of trajectory continuation. Finally some examples are given to show the efficiency of the proposed method.


2019 ◽  
Vol 53 (3) ◽  
pp. 867-886
Author(s):  
Mehrdad Ghaznavi ◽  
Narges Hoseinpoor ◽  
Fatemeh Soleimani

In this study, a Newton method is developed to obtain (weak) Pareto optimal solutions of an unconstrained multiobjective optimization problem (MOP) with fuzzy objective functions. For this purpose, the generalized Hukuhara differentiability of fuzzy vector functions and fuzzy max-order relation on the set of fuzzy vectors are employed. It is assumed that the objective functions of the fuzzy MOP are twice continuously generalized Hukuhara differentiable. Under this assumption, the relationship between weakly Pareto optimal solutions of a fuzzy MOP and critical points of the related crisp problem is discussed. Numerical examples are provided to demonstrate the efficiency of the proposed methodology. Finally, the convergence analysis of the method under investigation is discussed.


Author(s):  
Oscar Altuzarra ◽  
Charles Pinto ◽  
Bogdan Sandru ◽  
Enrique Amezua

The search of Pareto-optimal solutions for the optimal design of Low-Mobility Parallel Manipulators with Scho¨nflies motion is the subject of this paper. As a working example, a four-degree-of-freedom symmetric parallel manipulator for Scho¨nflies-motion generation is taken. In previous work, analytically found objective functions for the optimal design were used. As a consequence, some limitations were detected and new functions are required. First, a manipulator description is made, and kinematic and dynamic problems are solved. Next, an operational and dexterous workspace along with its volume is found making use of a discretization. Further, the variation of this volume with dimensional parameters is shown for purpose of optimal design. Similarly, the manipulator’s dexterity based on the Frobenius norm is found and weighted with the measure of dispersion. Then, upon a type of testing trajectory over this workspace, kinematic and dynamic results in the actuators are proposed as objective functions in multiobjective optimization.


2018 ◽  
Vol 140 (9) ◽  
Author(s):  
Hyeon-Seok Shim ◽  
Kwang-Yong Kim ◽  
Young-Seok Choi

This work presents a three-objective design optimization of a centrifugal pump impeller to reduce flow recirculation and cavitation using three-dimensional (3D) Reynolds-averaged Navier–Stokes equations. A cavitation model was used to simulate the multiphase cavitating flow inside the centrifugal pump. The numerical results were validated by comparing them with experimental data for the total head coefficient and critical cavitation number. To achieve the optimization goals, blockage at 50% of the design flow rate, hydraulic efficiency at the design flow rate, and critical cavitation number for a head-drop of 3% at 125% of the design flow rate were selected as the objective functions. Based on the results of the elementary effect (EE) method, the design variables selected were the axial length of the blade, the control point for the meridional profile of the shroud, the inlet radius of the blade hub, and the incidence angle of tip of the blade. Kriging models were constructed to approximate the objective functions in the design space using the objective function values calculated at the design points selected by Latin hypercube sampling (LHS). Pareto-optimal solutions were obtained using a multi-objective genetic algorithm (MOGA). Six representative Pareto-optimal designs (POD) were analyzed to evaluate the optimization results. The PODs showed large improvements in the objective functions compared to the baseline design. Thus, both the hydraulic performance and the reliability of the centrifugal pump were improved by the optimization.


Author(s):  
Jin-Hyuk Kim ◽  
Kwang-Jin Choi ◽  
Kwang-Yong Kim

A multi-objective optimization of a transonic axial compressor with circumferential casing grooves has been carried out in the present study. A hybrid multi-objective evolutionary algorithm coupled with response surface approximation is used to optimize the stall margin and design speed efficiency of the transonic axial compressor. Three-dimensional Reynolds-averaged Navier-Stokes equations with the shear stress transport turbulence model are discretized by finite volume approximations and solved on hexahedral grids for the flow analysis. The stall margin and peak adiabatic efficiency are used as objective functions for the optimization. Tip clearance and angle distribution at blade tip are considered as design variables in addition to the depth of the circumferential casing grooves which was more sensitive variable than the width in the previous work (GT2010-22396). Latin-hypercube sampling as design-of-experiments is used to generate twenty five design points within the design space. A fast non-dominated sorting genetic algorithm with an ε–constraint strategy for the local search is applied to determine the global Pareto-optimal solutions. The trade-off between two objectives is determined and discussed with respect to the representative clusters in the Pareto-optimal solutions compared to the smooth casing.


2012 ◽  
Vol 79 (2) ◽  
Author(s):  
Makoto Ohsaki ◽  
Jingyao Zhang ◽  
Isaac Elishakoff

Properties of Pareto optimal solutions considering bounded uncertainty are first investigated using an illustrative example of a simple truss. It is shown that the nominal values of the Pareto optimal solutions considering uncertainty are slightly different from those without considering uncertainty. Next a hybrid approach of multiobjective optimization and antioptimization is presented for force design of tensegrity structures. We maximize the lowest eigenvalue of the tangent stiffness matrix and minimize the deviation of forces from the specified target distribution. These objective functions are defined as the worst values due to the possible errors in the fabrication and construction processes. The Pareto optimal solutions are found by solving the two-level optimization–antioptimization problems using a nonlinear programming approach for the upper optimization problem and enumeration of the vertices of the uncertain region for the lower antioptimization problem.


Sign in / Sign up

Export Citation Format

Share Document