Quantitative Evaluation on the Evolution of Water Cone Behavior in a Heavy Oil Reservoir With Bottom Water

2020 ◽  
Vol 142 (6) ◽  
Author(s):  
Kai Wang ◽  
Ke Li ◽  
Wensheng Zhou ◽  
Guojin Zhu ◽  
Yue Pan ◽  
...  

Abstract In order to solve the problem of the unclear understanding of the water cone behavior and its influencing factors of horizontal well in a heavy oil reservoir with bottom water, in this paper, a series of physical models were established to quantitatively describe the inner relationships between them and further illustrated their influence on the water-cut increasing law. The results showed that the water cone and water-cut grew quickly in the heavy oil reservoir with bottom water. The sweep efficiency of the basic 2D sand-pack model reaches 0.68. The decrement of crude oil viscosity increases the sweep efficiency to about 0.08. The increment of production pressure drop increases the sweep efficiency to about 0.05–0.07. Heterogeneity enhancement decreases the sweep efficiency to about 0.06. The addition of adjustment well and barriers increases the sweep efficiency to about 0.20 and 0.08, respectively. The final sweep efficiency of the whole water cone in the 3D sand-pack model reaches 0.42. Finally, we found that the water-cut increment rules are mainly affected by water cone behavior, production schedule, and the location and distribution of barriers. The study in this paper lays a foundation for the rational and effective development of heavy oil reservoirs with bottom water, which has a broad field application prospects in the future.

2021 ◽  
Vol 329 ◽  
pp. 01069
Author(s):  
Jia Wang ◽  
Tongjing Liu ◽  
Hengyu Shi ◽  
Pengxiang Diwu ◽  
Jian Zhou ◽  
...  

The water cut of heavy oil reservoir with edge and bottom water rises rapidly and the recovery degree of crude oil is low. CO2 huff and puff is an effective measure to improve the recovery of this kind of reservoir, and scientific well selection is the premise of the measure effect. Because the existing well selection methods of CO2 huff and puff in heavy oil reservoir with edge and bottom water mostly take the oil increase of oil well as the evaluation index, ignoring the characterization of well water cut after huff and puff, it is unable to accurately screen all potential wells. Therefore, a quantitative well selection method of CO2 huff and puff in heavy oil reservoir with edge and bottom water based on water cut is proposed. The method is based on fuzzy comprehensive evaluation theory and analytic hierarchy process, and takes the water cut after CO2 huff and puff as the evaluation index. Several groups of typical models are designed to screen the sensitive factors and laws of CO2 huff and puff well selection in heavy oil edge and bottom water reservoir from three aspects of geology, water production law and technology. Than the judgment matrix is established. There is little interference from human factors in the process of well selection, and the rationality of the method has been verified by the effect of field actual well measures. This method is helpful to improve the well selection method system of CO2 huff and puff in this kind of reservoir, and is a reasonable supplement to the existing well selection method which takes the oil increment as the only evaluation index.


2021 ◽  
Author(s):  
Yong Yang ◽  
Xiaodong Li ◽  
Changwei Sun ◽  
Yuanzhi Liu ◽  
Renkai Jiang ◽  
...  

Abstract The problem of water production in carbonate reservoir is always a worldwide problem; meanwhile, in heavy oil reservoir with bottom water, rapid water breakthrough or high water cut is the development feature of this kind of reservoir; the problem of high water production in infill wells in old reservoir area is very common. Each of these three kinds of problems is difficult to be tackled for oilfield developers. When these three kinds of problems occur in a well, the difficulty of water shutoff can be imagined. Excessive water production will not only reduce the oil rate of wells, but also increase the cost of water treatment, and even lead to well shut in. Therefore, how to solve the problem of produced water from infill wells in old area of heavy oil reservoir with bottom water in carbonate rock will be the focus of this paper. This paper elaborates the application of continuous pack-off particles with ICD screen (CPI) technology in infill wells newly put into production in brown field of Liuhua, South China Sea. Liuhua oilfield is a biohermal limestone heavy oil reservoir with strong bottom water. At present, the recovery is only 11%, and the comprehensive water cut is as high as 96%. Excessive water production greatly reduces the hydrocarbon production of the oil well, which makes the production of the oilfield decrease rapidly. In order to delay the decline of oil production, Liuhua oilfield has adopted the mainstream water shutoff technology, including chemical and mechanical water shutoff methods. The application results show that the adaptability of mainstream water shutoff technology in Liuhua oilfield needs to be improved. Although CPI has achieved good water shutoff effect in the development and old wells in block 3 of Liuhua oilfield, there is no application case in the old area of Liuhua oilfield which has been developed for decades, so the application effect is still unclear. At present, the average water cut of new infill wells in the old area reaches 80% when commissioned and rises rapidly to more than 90% one month later. Considering that there is more remaining oil distribution in the old area of Liuhua oilfield and the obvious effect of CPI in block 3, it is decided to apply CPI in infill well X of old area for well completion. CPI is based on the ICD screen radial high-speed fluid containment and pack-off particles in the wellbore annulus to prevent fluid channeling axially, thus achieving well bore water shutoff and oil enhancement. As for the application in fractured reef limestone reservoir, the CPI not only has the function of wellbore water shutoff, but also fills the continuous pack-off particles into the natural fractures in the formation, so as to achieve dual water shutoff in wellbore and fractures, and further enhance the effect of water shutoff and oil enhancement. The target well X is located in the old area of Liuhua oilfield, which is a new infill well in the old area. This target well with three kinds of water problems has great risk of rapid water breakthrough. Since 2010, 7 infill wells have been put into operation in this area, and the water cut after commissioning is 68.5%~92.6%. The average water cut is 85.11% and the average oil rate is 930.92 BPD. After CPI completion in well X, the water cut is only 26% (1/3 of offset wells) and the oil rate is 1300BPD (39.6% higher than that of offset wells). The target well has achieved remarkable effect of reducing water and increasing oil. In addition, in the actual construction process, a total of 47.4m3 particles were pumped into the well, which is equivalent to 2.3 times of the theoretical volume of the annulus between the screen and the borehole wall. Among them, 20m3 continuous pack-off particles entered the annulus, and 27.4m3 continuous pack-off particles entered the natural fractures in the formation. Through the analysis of CPI completed wells in Liuhua oilfield, it is found out that the overfilling quantity is positively correlated to the effect of water shutoff and oil enhancement.


2012 ◽  
Vol 524-527 ◽  
pp. 1245-1251
Author(s):  
Fu Lin Wang

Artificial barrier morphology distribution mechanism and the EOR factors of he heavy oil reservoir with bottom water is be researched, Through numerical calculation and numerical simulation method. The model for calculating the height of the artificial-interlayer with curvilinear side surface is established. This model quantitatively describes the relationship between the artificial-interlayer height and oil yield, reservoir thickness, radial distance from well axis, reservoir permeability and crude oil viscosity. Maximum artificial-interlayer height and radius, the artificial-interlayer heights at different radial distances can be obtained according to this model. Through the case, the characteristics of artificial-interlayer form are analyzed, and rules of artificial-interlayer conformation are obtained when artificial-interlayer liquid with different volume, viscosity and race are injected. The further research are carried out through numerical simulation method, and the theoretical results are be Compared and verified which deepen the study of artificial-interlayer shape influence factor . Results show that: the volume and position of injected gel have more influence on development effect is obviously, the interlayer is designed 3M over the oil-water interface and thickness perforated is 6m is better, which provides a reference for the development of bottom-water reservoir.


SPE Journal ◽  
2019 ◽  
Vol 24 (02) ◽  
pp. 511-521
Author(s):  
V.. Mohan ◽  
P.. Neogi ◽  
B.. Bai

Summary The dynamics of a process in which a solvent in the form of a vapor or gas is introduced in a heavy-oil reservoir is considered. The process is called the solvent vapor-extraction process (VAPEX). When the vapor dissolves in the oil, it reduces its viscosity, allowing oil to flow under gravity and be collected at the bottom producer well. The conservation-of-species equation is analyzed to obtain a more-appropriate equation that differentiates between the velocity within the oil and the velocity at the interface, which can be solved to obtain a concentration profile of the solvent in oil. We diverge from an earlier model in which the concentration profile is assumed. However, the final result provides the rate at which oil is collected, which agrees with the previous model in that it is proportional to h, where h is the pay-zone height; in contrast, some of the later data show a dependence on h. Improved velocity profiles can capture this dependence. A dramatic increase in output is seen if the oil viscosity decreases in the presence of the solvent, although the penetration of the solvent into the oil is reduced because under such conditions the diffusivity decreases with decreased solvent. One other important feature we observe is that when the viscosity-reducing effect is very large, the recovered fluid is mainly solvent. Apparently, some optimum might exist in the solubility φo, where the ratio of oil recovered to solvent lost is the largest. Finally, the present approach also allows us to show how the oil/vapor interface evolves with time.


Author(s):  
Wang Kai ◽  
Zhou Wensheng ◽  
Li Ke ◽  
Liu Chen ◽  
Geng Yanhong ◽  
...  

2012 ◽  
Author(s):  
Chao Liu ◽  
Xinwu Liao ◽  
Yunlai Zhang ◽  
Ming-Ming Chang ◽  
Chunrong Mu ◽  
...  

2012 ◽  
Vol 616-618 ◽  
pp. 992-995
Author(s):  
An Zhu Xu ◽  
Long Xin Mu ◽  
Xiang Hong Wu ◽  
Zi Fei Fan ◽  
Lun Zhao

The dryness of superheated steam is 100% and it exists in the form of pure steam whose properties are like ideal gas. When the steam has a large degree of superheat, it may take a relatively long time to cool, during which time the steam is releasing very little energy and transmitted long distances. The heating radius of superheated steam in the formation is 5-10m larger than saturated steam. In the heating area of superheated steam, the comprehensive effects by superheated steam (crude oil viscosity reduction, improved flow environment, changes in rock wettability and improved oil displacement efficiency, etc.) is much higher than that of saturated steam. Superheated steam stimulation in Kenkyak high water cut heavy oil reservoir pilot test results showed that the average daily oil production of single well by superheated steam stimulation was 2-4 times than that of saturated steam stimulation. Superheated steam is more effective to heat water-invaded oil reservoir than saturated steam.


2018 ◽  
Vol 38 ◽  
pp. 01054
Author(s):  
Guan Wang ◽  
Rui Wang ◽  
Yaxiu Fu ◽  
Lisha Duan ◽  
Xizhi Yuan ◽  
...  

Mengulin sandstone reservoir in Huabei oilfield is low- temperature heavy oil reservoir. Recently, it is at later stage of waterflooding development. The producing degree of water flooding is poor, and it is difficult to keep yield stable. To improve oilfield development effect, according to the characteristics of reservoir geology, microbial enhanced oil recovery to improve oil displacement efficiency is researched. 2 microbial strains suitable for the reservoir conditions were screened indoor. The growth characteristics of strains, compatibility and function mechanism with crude oil were studied. Results show that the screened strains have very strong ability to utilize petroleum hydrocarbon to grow and metabolize, can achieve the purpose of reducing oil viscosity, and can also produce biological molecules with high surface activity to reduce the oil-water interfacial tension. 9 oil wells had been chosen to carry on the pilot test of microbial stimulation, of which 7 wells became effective with better experiment results. The measures effective rate is 77.8%, the increased oil is 1,093.5 tons and the valid is up to 190 days.


2012 ◽  
Vol 594-597 ◽  
pp. 2438-2441 ◽  
Author(s):  
Shi Jun Huang ◽  
Ping Hu ◽  
Qiu Li

In this paper, employing reservoir simulation and mathematical analysis methods, considering typical heavy oil reservoir and fluid thermal properties, the heating and producing shape of thermal recovery with horizontal well for different heavy oil reservoirs including ordinary, extra and super heavy oil are investigated based on the modification of thermal recovery parameters of different viscosity. By introducing heating radius and producing radius and considering the coupling effect of temperature, pressure and oil saturation fields, a quantitative expression between heating radius/producing radius and oil viscosity, formation thickness is presented, so is the impact of oil viscosity on the heating radius. Results shows that for Cyclic Steam Stimulation, the producing radius of horizontal well is bigger than its heating radius for light oil, both of which, however, shrink with higher viscosity. Beyond a critical viscosity, where the heating radius equals to the producing radius, the heating radius of horizontal well would be bigger than its producing radius. More over, the critical viscosity shows tight relationship to the formation thickness.


2020 ◽  
Vol 08 (11) ◽  
pp. 201-208
Author(s):  
Xiujuan Zhao ◽  
Songru Mou ◽  
Jie Tan ◽  
Bowei Liu ◽  
Enhui Sun

Sign in / Sign up

Export Citation Format

Share Document