Dynamic Point-To-Point Trajectory Planning for Three Degrees-of-Freedom Cable-Suspended Parallel Robots Using Rapidly Exploring Random Tree Search

2020 ◽  
Vol 12 (4) ◽  
Author(s):  
Sheng Xiang ◽  
Haibo Gao ◽  
Zhen Liu ◽  
Clément Gosselin

Abstract This paper proposes a dynamic point-to-point trajectory planning technique for three degrees-of-freedom (DOFs) cable-suspended parallel robots. The proposed technique is capable of generating feasible multiple-swing trajectories that reach points beyond the footprint of the robot. Tree search algorithms are used to automatically determine a sequence of intermediate points to enhance the versatility of the planning technique. To increase the efficiency of the tree search, a one-swing motion primitive and a steering motion primitive are designed based on the dynamic model of the robot. Closed-form expressions for the motion primitives are given, and a corresponding rapid feasibility check process is proposed. An energy-based metric is used to estimate the distance in the Cartesian space between two points of a dynamic point-to-point task, and this system’s specific distance metric speeds up the coverage. The proposed technique is evaluated using a series of Monte Carlo runs, and comparative statistics results are given. Several example trajectories are presented to illustrate the approach. The results are compared with those obtained with the existing state-of-the-art methods, and the proposed technique is shown to be more general compared to previous analytical planning techniques while generating smoother trajectories than traditional rapidly exploring randomized tree (RRT) methods.

Author(s):  
Mustafa Özdemir

Planar two-legged parallel robots with three degrees of freedom have been suggested in the literature as a solution to reduce the leg interference problem of their conventional three-legged counterparts, and since then have attracted considerable attention. This paper presents a singularity analysis of these robots. Three alternatives, namely the robots with 2-RRR, 2-RPR, and 2-PRR structures are considered. Type I, II, and III singularity conditions are obtained taking into account all possible actuation schemes. Several singularity-free actuation schemes are enumerated and discussed. The performed analysis also shows that adjustable designs are possible for manipulators with 2-PRR structures to have singularity-free operation. The proposed design concept and its effectiveness are illustrated through numerical examples.


Robotica ◽  
1996 ◽  
Vol 14 (2) ◽  
pp. 227-234 ◽  
Author(s):  
Shudong Sun ◽  
A.S. Morris ◽  
A.M.S. Zalzala

SUMMARYThe paper focuses on the problem of trajectory planning of multiple coordinating robots. When multiple robots collaborate to manipulate one object, a redundant system is formed. There are a number of trajectories that the system can follow. These can be described in Cartesian coordinate space by an nth order polynomial. This paper presents an optimisation method based on the Genetic Algorithms (GAs) which chooses the parameters of the polynomial, such that the execution time and the drive torques for the robot joints are minimized. With the robot's dynamic constraints taken into account, the pitimised trajectories are realisable. A case study with two planar-moving robots, each having three degrees of freedom, shows that the method is effective.


2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Sen Qian ◽  
Kunlong Bao ◽  
Bin Zi ◽  
W. D. Zhu

Abstract This paper presents a new trajectory planning method based on the improved quintic B-splines curves for a three degrees-of-freedom (3-DOF) cable-driven parallel robot (CDPR). First, the conditions of positive cables’ tension are expressed in terms of the position and acceleration constraints of the end-effector. Then, an improved B-spline curve is introduced, which is employed for generating a pick-and-place path by interpolating a set of given via-points. Meanwhile, by expressing the position and acceleration of the end-effector in terms of the first and second derivatives of the improved B-spline, the cable tension constraints are described in the form of B-spline parameters. According to the properties of the defined pick-and-place path, the proposed motion profile is dominated by two factors: the time taken for the end-effector to pass through all the via-points and the ratio between the nodes of B-spline. The two factors are determined through multi-objective optimization based on the efficiency coefficient method. Finally, experimental results on a 3-DOF CDPR show that the improved B-spline exhibits overall superior behavior in terms of velocity, acceleration, and cables force compared with the traditional B-spline. The validity of the proposed trajectory planning method is proved through the experiments.


1987 ◽  
Vol 11 (4) ◽  
pp. 197-200 ◽  
Author(s):  
B. Benhabib ◽  
R.G. Fenton ◽  
A.A. Goldenberg

The basic characteristic of kinematically redundant robots is that non-unique joint solutions may exist for a specified end effector location. Thus, trajectory planning for a kinematically redundant robot requires an optimization procedure to determine the joint displacements when solving the inverse kinematics relations. In this paper an analytical solution is developed for the trajectory optimization problem of redundant robots based on the classical Lagrange’s method. A detailed formulation is provided for seven degrees of freedom robots, which minimizes the Euclidean norm of joint dislacements for point-to-point motion trajectory planning.


Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


Author(s):  
Dian Li ◽  
Sheng Guo ◽  
Haibo Qu

In this paper, a novel three-degrees-of-freedom multiple working modes parallel mechanism with variable workspace is proposed. Several studies including kinematic and prescribed trajectory planning are performed. First, the degrees of freedom of mechanism's two working modes are calculated based on screw theory. A prototype made by 3D printer also has been developed. Then, the inverse/forward kinematics and Jacobian matrices are obtained. The workspace and singularity are also analyzed, which show that the proposed parallel mechanism possesses singularity-free internal workspace. Finally, a working mode determination method is presented, which can be used to obtain suitable workspace in order to fully contain a prescribed trajectory. An example trajectory is used to verify the reasonability of the proposed method.


Robotica ◽  
2018 ◽  
Vol 37 (3) ◽  
pp. 539-559 ◽  
Author(s):  
Taha Chettibi

SUMMARYThe paper introduces the use of radial basis functions (RBFs) to generate smooth point-to-point joint trajectories for robot manipulators. First, Gaussian RBF interpolation is introduced taking into account boundary conditions. Then, the proposed approach is compared with classical planning techniques based on polynomial and trigonometric models. Also, the trajectory planning problem involving via-points is solved using the proposed RBF interpolation technique. The obtained trajectories are then compared with those synthesized using algebraic and trigonometric splines. Finally, the proposed method is tested for the six-joint PUMA 560 robot in two cases (minimum time and minimum time-jerk) and results are compared with those of other planning techniques. Numerical results demonstrate the advantage of the proposed technique, offering an effective solution to generate trajectories with short execution time and smooth profile.


Author(s):  
Ping Ren ◽  
Clément Gosselin

In this paper, the dynamic point-to-point trajectory planning of cable-suspended robots is investigated. A simple planar two-degree-of-freedom (2-dof) robot is used to demonstrate the technique. In order to maintain the cables’ positive tension, a set of algebraic inequalities is derived from the dynamic model of the 2-dof robot. The trajectories are defined using parametric polynomials with the coefficients determined by the prescribed initial and final states, and the variable time duration. With the polynomials substituted into the inequality constraints, the planning problem is then converted into an algebraic investigation on how the coefficients of the polynomials will affect the number of real roots over a given interval. An analytical approach based on a polynomial’s Discrimination Matrix and Discriminant Sequence is proposed to solve the problem. It is shown that, by adjusting the time duration within appropriate ranges, it is possible to find positive-definite polynomials such that the polynomial-based trajectories always satisfy the inequality constraints of the dynamic system. Feasible dynamic trajectories that are able to travel both beyond and within the static workspace will exploit more potential of the cable-suspended robotic platform.


2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Adrián Peidró ◽  
José María Marín ◽  
Arturo Gil ◽  
Óscar Reinoso

This paper analyzes the multiplicity of the solutions to forward kinematics of two classes of analytic robots: 2RPR-PR robots with a passive leg and 3-RPR robots with nonsimilar flat platform and base. Since their characteristic polynomials cannot have more than two valid roots, one may think that triple solutions, and hence nonsingular transitions between different assembly modes, are impossible for them. However, the authors show that the forward kinematic problems of these robots always admit quadruple solutions and obtain analytically the loci of points of the joint space where these solutions occur. Then, it is shown that performing trajectories in the joint space that enclose these points can produce nonsingular transitions, demonstrating that it is possible to design simple analytic parallel robots with two and three degrees-of-freedom (DOF) and the ability to execute these transitions.


Sign in / Sign up

Export Citation Format

Share Document