Performing Nonsingular Transitions Between Assembly Modes in Analytic Parallel Manipulators by Enclosing Quadruple Solutions

2015 ◽  
Vol 137 (12) ◽  
Author(s):  
Adrián Peidró ◽  
José María Marín ◽  
Arturo Gil ◽  
Óscar Reinoso

This paper analyzes the multiplicity of the solutions to forward kinematics of two classes of analytic robots: 2RPR-PR robots with a passive leg and 3-RPR robots with nonsimilar flat platform and base. Since their characteristic polynomials cannot have more than two valid roots, one may think that triple solutions, and hence nonsingular transitions between different assembly modes, are impossible for them. However, the authors show that the forward kinematic problems of these robots always admit quadruple solutions and obtain analytically the loci of points of the joint space where these solutions occur. Then, it is shown that performing trajectories in the joint space that enclose these points can produce nonsingular transitions, demonstrating that it is possible to design simple analytic parallel robots with two and three degrees-of-freedom (DOF) and the ability to execute these transitions.

Author(s):  
R. Jha ◽  
D. Chablat ◽  
F. Rouillier ◽  
G. Moroz

Trajectory planning is a critical step while programming the parallel manipulators in a robotic cell. The main problem arises when there exists a singular configuration between the two poses of the end-effectors while discretizing the path with a classical approach. This paper presents an algebraic method to check the feasibility of any given trajectories in the workspace. The solutions of the polynomial equations associated with the trajectories are projected in the joint space using Gröbner based elimination methods and the remaining equations are expressed in a parametric form where the articular variables are functions of time t unlike any numerical or discretization method. These formal computations allow to write the Jacobian of the manipulator as a function of time and to check if its determinant can vanish between two poses. Another benefit of this approach is to use a largest workspace with a more complex shape than a cube, cylinder or sphere. For the Orthoglide, a three degrees of freedom parallel robot, three different trajectories are used to illustrate this method.


Author(s):  
Yanwen Li ◽  
Yueyue Zhang ◽  
Lumin Wang ◽  
Zhen Huang

This paper investigates a novel 4-DOF 3-RRUR parallel manipulator, the number and the characteristics of its degrees of freedom are determined firstly, the rational input plan and the invert and forward kinematic solutions are carried out then. The corresponding numeral example of the forward kinematics is given. This type of parallel manipulators has a symmetrical structure, less accumulated error, and can be used to construct virtual-axis machine tools. The analysis in this paper will play an important role in promoting the application of such manipulators.


Author(s):  
Grigore Gogu

The paper presents singularity-free fully-isotropic T1R2-type parallel manipulators (PMs) with three degrees of freedom. The mobile platform has one independent translation (T1) and two rotations (R2). A method is proposed for structural synthesis of fully-isotropic T1R2-type PMs based on the theory of linear transformations. A one-to-one correspondence exists between the actuated joint velocity space and the external velocity space of the moving platform. The Jacobian matrix mapping the two vector spaces of fully-isotropic T1R2-type PMs presented in this paper is the 3x3 identity matrix throughout the entire workspace. The condition number and the determinant of the Jacobian matrix being equal to one, the manipulator performs very well with regard to force and motion transmission capabilities. As far as we are aware, this paper presents for the first time in the literature solutions of singularity-free T1R2-type PMs with decoupled an uncoupled motions, along with the fully-isotropic solutions.


2021 ◽  
Author(s):  
Amin Moosavian

The ability to vary the geometry of a wing to adapt to different flight conditions can significantly improve the performance of an aircraft. However, the realization of any morphing concept will typically be accompanied by major challenges. Specifically, the geometrical constraints that are imposed by the shape of the wing and the magnitude of the air and inertia loads make the usage of conventional mechanisms inefficient for morphing applications. Such restrictions have served as inspirations for the design of a modular morphing concept, referred to as the Variable Geometry Wing-box (VGW). The design for the VGW is based on a novel class of reconfigurable robots referred to as Parallel Robots with Enhanced Stiffness (PRES) which are presented in this dissertation. The underlying feature of these robots is the efficient exploitation of redundancies in parallel manipulators. There have been three categories identified in the literature to classify redundancies in parallel manipulators: 1) actuation redundancy, 2) kinematic redundancy, and 3) sensor redundancy. A fourth category is introduced here, referred to as 4) static redundancy. The latter entails several advantages traditionally associated only with actuation redundancy, most significant of which is enhanced stiffness and static characteristics, without any form of actuation redundancy. Additionally, the PRES uses the available redundancies to 1) control more Degrees of Freedom (DOFs) than there are actuators in the system, that is, under-actuate, and 2) provide multiple degrees of fault tolerance. Although the majority of the presented work has been tailored to accommodate the VGW, it can be applied to any comparable system, where enhanced stiffness or static characteristics may be desired without actuation redundancy. In addition to the kinematic and the kinetostatic analyses of the PRES, which are developed and presented in this dissertation along with several case-studies, an optimal motion control algorithm for minimum energy actuation is proposed. Furthermore, the optimal configuration design for the VGW is studied. The optimal configuration design problem is posed in two parts: 1) the optimal limb configuration, and 2) the optimal topological configuration. The former seeks the optimal design of the kinematic joints and links, while the latter seeks the minimal compliance solution to their placement within the design space. In addition to the static and kinematic criteria required for reconfigurability, practical design considerations such as fail-safe requirements and design for minimal aeroelastic impact have been included as constraints in the optimization process. The effectiveness of the proposed design, analysis, and optimization is demonstrated through simulation and a multi-module reconfigurable prototype.


Robotica ◽  
2015 ◽  
Vol 34 (11) ◽  
pp. 2610-2628 ◽  
Author(s):  
Davood Naderi ◽  
Mehdi Tale-Masouleh ◽  
Payam Varshovi-Jaghargh

SUMMARYIn this paper, the forward kinematic analysis of 3-degree-of-freedom planar parallel robots with identical limb structures is presented. The proposed algorithm is based on Study's kinematic mapping (E. Study, “von den Bewegungen und Umlegungen,” Math. Ann.39, 441–565 (1891)), resultant method, and the Gröbner basis in seven-dimensional kinematic space. The obtained solution in seven-dimensional kinematic space of the forward kinematic problem is mapped into three-dimensional Euclidean space. An alternative solution of the forward kinematic problem is obtained using resultant method in three-dimensional Euclidean space, and the result is compared with the obtained mapping result from seven-dimensional kinematic space. Both approaches lead to the same maximum number of solutions: 2, 6, 6, 6, 2, 2, 2, 6, 2, and 2 for the forward kinematic problem of planar parallel robots; 3-RPR, 3-RPR, 3-RRR, 3-RRR, 3-RRP, 3-RPP, 3-RPP, 3-PRR, 3-PRR, and 3-PRP, respectively.


2015 ◽  
Vol 8 (2) ◽  
Author(s):  
Jun Wu ◽  
Binbin Zhang ◽  
Liping Wang

The paper deals with the evaluation of acceleration of redundant and nonredundant parallel manipulators. The dynamic model of three degrees-of-freedom (3DOF) parallel manipulator is derived by using the virtual work principle. Based on the dynamic model, a measure is proposed for the acceleration evaluation of the redundant parallel manipulator and its nonredundant counterpart. The measure is designed on the basis of the maximum acceleration of the mobile platform when one actuated joint force is unit and other actuated joint forces are less than or equal to a unit force. The measure for evaluation of acceleration can be used to evaluate the acceleration of both redundant parallel manipulators and nonredundant parallel manipulators. Furthermore, the acceleration of the 4-PSS-PU parallel manipulator and its nonredundant counterpart are compared.


Author(s):  
Mustafa Özdemir

Planar two-legged parallel robots with three degrees of freedom have been suggested in the literature as a solution to reduce the leg interference problem of their conventional three-legged counterparts, and since then have attracted considerable attention. This paper presents a singularity analysis of these robots. Three alternatives, namely the robots with 2-RRR, 2-RPR, and 2-PRR structures are considered. Type I, II, and III singularity conditions are obtained taking into account all possible actuation schemes. Several singularity-free actuation schemes are enumerated and discussed. The performed analysis also shows that adjustable designs are possible for manipulators with 2-PRR structures to have singularity-free operation. The proposed design concept and its effectiveness are illustrated through numerical examples.


1993 ◽  
Vol 115 (4) ◽  
pp. 938-940 ◽  
Author(s):  
Jean-Pierre Merlet

Forward kinematics has been studied for polyhedral parallel manipulators. We present here an algorithm for the forward kinematic of nonpolyhedral manipulators the plates of which have a symmetry axis. We show that there will be at most 352 possible solutions and exhibit a configuration with eight solutions.


2011 ◽  
Vol 308-310 ◽  
pp. 1252-1257
Author(s):  
Ping An Liu ◽  
Xiao Heng Shi

By using the theory and method of topology structure design of parallel robotic mechanisms, the degrees of freedom (DOF) is analyzed based on 4-DOF(3T1R) asymmetric parallel robots in this paper. Then, the inverse and forward kinematics of the manipulator are calculated through establishment of constrained equations with analytical approach.


2013 ◽  
Vol 6 (1) ◽  
Author(s):  
Georg Nawratil

We transfer the basic idea of bonds, introduced by Hegedüs, Schicho, and Schröcker for overconstrained closed chains with rotational joints, to the theory of self-motions of parallel manipulators of Stewart Gough (SG) type. Moreover, we present some basic facts and results on bonds and demonstrate the potential of this theory on the basis of several examples. As a by-product we give a geometric characterization of all SG platforms with a pure translational self-motion and of all spherical three-degrees of freedom (DOF) RPR manipulators with self-motions.


Sign in / Sign up

Export Citation Format

Share Document