Digital Design Automation to Support In Situ Embedding of Functional Objects in Additive Manufacturing

2020 ◽  
Vol 142 (11) ◽  
Author(s):  
Manoj Malviya ◽  
Swapnil Sinha ◽  
Catherine Berdanier ◽  
Nicholas A. Meisel

Abstract Additive manufacturing (AM) offers designers access to the entire volume of an artifact during its build operation, including the embedding of foreign objects, like sensors, motors, and actuators, into the artifact to produce multifunctional products from the build tray. However, the application of embedding requires extensive designer expertise in AM. This research aims to develop a tool to automate design decisions for in situ embedding, eliminating the need for ad hoc design decisions made by experts. Two unique approaches are proposed in this work: shadow projection and voxel simulation. Both of these approaches follow a three-stage methodology to achieve design automation by (1) identifying the optimum orientation for the object, (2) designing cavity, and finally (3) designing the shape converter for a flush surface at the paused layer. The two approaches differ in Stages 2 and 3. Where the shadow projection approach employs a series of point cloud manipulation to geometry of the embedded object, the voxel simulation approach simulates the process of insertion of the embedding geometry into the part voxel by voxel. While both proposed approaches are successful in automating design for embedding complex geometries, they result in tradeoffs between final designs and the time for computation. Computational experiment with six test cases shows that designers must strategically choose from one of the approaches to efficiently automate the digital design for embedding.

Author(s):  
Manoj Malviya ◽  
Swapnil Sinha ◽  
Nicholas A. Meisel

Abstract Additive manufacturing (AM) offers access to the entire volume of a printed artifact during the build operation. This makes it possible to embedding foreign components (e.g. sensors, motors, actuators) into AM parts, thus enabling multifunctional products directly from the build tray. However, the process of designing for embedding currently requires extensive designer expertise in AM. Current methods rely on a designer to select an orientation for the embedded component and design a cavity such that the component can be successfully embedded without compromising the print quality of the final part. For irregular geometries, additional design knowledge is required to prepare a shape converter: a secondary piece to ensure a flush deposition surface on top of the embedded component. This research aims to develop a tool to automate these different design decisions for in-situ embedding, thus reducing the need for expert design knowledge. A three-stage process is proposed to 1) find the optimum orientation based on cavity volume and cross-section area, 2) create the necessary cavity geometry to successfully insert the component, and 3) perform a Boolean operation to create the digital design for any requisite shape converter. Performance of the tool is demonstrated with four test cases with varying levels of geometric complexity. These test cases show that the proposed process successfully handles arbitrary embedded geometries, though several limitations are noted for future work.


Materials ◽  
2021 ◽  
Vol 14 (9) ◽  
pp. 2450
Author(s):  
Andreas Borowski ◽  
Christian Vogel ◽  
Thomas Behnisch ◽  
Vinzenz Geske ◽  
Maik Gude ◽  
...  

Continuous carbon fibre-reinforced thermoplastic composites have convincing anisotropic properties, which can be used to strengthen structural components in a local, variable and efficient way. In this study, an additive manufacturing (AM) process is introduced to fabricate in situ consolidated continuous fibre-reinforced polycarbonate. Specimens with three different nozzle temperatures were in situ consolidated and tested in a three-point bending test. Computed tomography (CT) is used for a detailed analysis of the local material structure and resulting material porosity, thus the results can be put into context with process parameters. In addition, a highly curved test structure was fabricated that demonstrates the limits of the process and dependent fibre strand folding behaviours. These experimental investigations present the potential and the challenges of additive manufacturing-based in situ consolidated continuous fibre-reinforced polycarbonate.


2021 ◽  
Vol 64 ◽  
pp. 972-981
Author(s):  
Daniel Kaczmarek ◽  
Daniel Walczyk ◽  
James Garofalo ◽  
Margaret Sobkowicz-Kline

2020 ◽  
Vol 25 (8) ◽  
pp. 679-689
Author(s):  
J. Raplee ◽  
J. Gockel ◽  
F. List ◽  
K. Carver ◽  
S. Foster ◽  
...  

Author(s):  
Arash Alex Mazhari ◽  
Randall Ticknor ◽  
Sean Swei ◽  
Stanley Krzesniak ◽  
Mircea Teodorescu

AbstractThe sensitivity of additive manufacturing (AM) to the variability of feedstock quality, machine calibration, and accuracy drives the need for frequent characterization of fabricated objects for a robust material process. The constant testing is fiscally and logistically intensive, often requiring coupons that are manufactured and tested in independent facilities. As a step toward integrating testing and characterization into the AM process while reducing cost, we propose the automated testing and characterization of AM (ATCAM). ATCAM is configured for fused deposition modeling (FDM) and introduces the concept of dynamic coupons to generate large quantities of basic AM samples. An in situ actuator is printed on the build surface to deploy coupons through impact, which is sensed by a load cell system utilizing machine learning (ML) to correlate AM data. We test ATCAM’s ability to distinguish the quality of three PLA feedstock at differing price points by generating and comparing 3000 dynamic coupons in 10 repetitions of 100 coupon cycles per material. ATCAM correlated the quality of each feedstock and visualized fatigue of in situ actuators over each testing cycle. Three ML algorithms were then compared, with Gradient Boost regression demonstrating a 71% correlation of dynamic coupons to their parent feedstock and provided confidence for the quality of AM data ATCAM generates.


Sign in / Sign up

Export Citation Format

Share Document