Local Heat Transfer of Saturated Flow Boiling in Vertical Narrow Microchannel

2020 ◽  
Vol 142 (7) ◽  
Author(s):  
Junye Li ◽  
Yuhao Lin ◽  
Wei Li ◽  
Kan Zhou

Abstract An experimental study of saturated flow boiling in a high-aspect-ratio one-side-heating rectangular microchannel was conducted with de-ionized water as the working fluid. ZnO microrods with the average diameter of about 1 μm and length of about 7 μm were synthesized on the Ti wafer surface, which was used to fabricate the heated bottom surface of the microchannel. The ZnO microrod surface appeared to be hydrophobic and the capillary wetting effect on the surface was found after being wet. The heat transfer and pressure drop characteristics of saturated flow boiling in the microchannel were studied and the flow patterns were photographed with a high-speed camera. Almost all the flow patterns observed in this experiment featured the main annular flow and abrupt flush of bubbly flow. Because of the capillary wetting effect on the ZnO microrod surface, the local dryout and rewetting phenomenon did not appear in this study. However, due to the numerous nucleation sites on ZnO microrod surface, the abrupt bubble flow caused much more disruption to the liquid film of annular flow when compared to the regular silicon surface. The abrupt bubble flow flushed through the annular liquid film and caused the fluctuation and nonuniformity of the liquid film and heat transfer deterioration, which was severer in the high heat flux conditions. Otherwise, the capillary effect on the ZnO microrod surface was able to restrict the nonuniformity of the liquid film under high heat flux and low mass flux conditions; thus, the deterioration of heat transfer performances diminished.

2021 ◽  
Author(s):  
Ji Hwan Lim ◽  
Minkyu Park

Abstract The onset of nucleate boiling (ONB) is the point at which the heat transfer mechanism in fluids changes and is one of the thermo-hydraulic factors that must be considered when establishing a cooling system operation strategy. Because the high heat flux of several MW/m2, which is loaded within a tokamak, is applied under a one-side heating condition, it is necessary to determine a correlative relation that can predict ONB under special heating conditions. In this study, the ONB of a one-side-heated screw tube was experimentally analyzed via a subcooled flow boiling experiment. The helical nut structure of the screw tube flow path wall allows for improved heat transfer performance relative to smooth tubes, providing a screw tube with a 53.98% higher ONB than a smooth tube. The effects of the system parameters on the ONB heat flux were analyzed based on the changes in the heat transfer mechanism, with the results indicating that the flow rate and degree of subcooling are proportional to the ONB heat flux because increasing these factors improves the forced convection heat transfer and increases the condensation rate, respectively. However, it was observed that the liquid surface tension and latent heat decrease as the pressure increases, leading to a decrease in the ONB heat flux. An evaluation of the predictive performance of existing ONB correlations revealed that most have high error rates because they were developed based on ONB experiments on micro-channels or smooth tubes and not under one-side high heat load conditions. To address this, we used dimensional analysis based on Python code to develop new ONB correlations that reflect the influence of system parameters.


Author(s):  
Jensen Hoke ◽  
Todd Bandhauer ◽  
Jack Kotovsky ◽  
Julie Hamilton ◽  
Paul Fontejon

Liquid-vapor phase change heat transfer in microchannels offers a number of significant advantages for thermal management of high heat flux laser diodes, including reduced flow rates and near constant temperature heat rejection. Modern laser diode bars can produce waste heat loads >1 kW cm−2, and prior studies show that microchannel flow boiling heat transfer at these heat fluxes is possible in very compact heat exchanger geometries. This paper describes further performance improvements through area enhancement of microchannels using a pyramid etching scheme that increases heat transfer area by ∼40% over straight walled channels, which works to promote heat spreading and suppress dry-out phenomenon when exposed to high heat fluxes. The device is constructed from a reactive ion etched silicon wafer bonded to borosilicate to allow flow visualization. The silicon layer is etched to contain an inlet and outlet manifold and a plurality of 40μm wide, 200μm deep, 2mm long channels separated by 40μm wide fins. 15μm wide 150μm long restrictions are placed at the inlet of each channel to promote uniform flow rate in each channel as well as flow stability in each channel. In the area enhanced parts either a 3μm or 6μm sawtooth pattern was etched vertically into the walls, which were also scalloped along the flow path with the a 3μm periodicity. The experimental results showed that the 6μm area-enhanced device increased the average maximum heat flux at the heater to 1.26 kW cm2 using R134a, which compares favorably to a maximum of 0.95 kw cm2 dissipated by the plain walled test section. The 3μm area enhanced test sections, which dissipated a maximum of 1.02 kW cm2 showed only a modest increase in performance over the plain walled test sections. Both area enhancement schemes delayed the onset of critical heat flux to higher heat inputs.


2008 ◽  
Vol 51 (21-22) ◽  
pp. 5400-5414 ◽  
Author(s):  
Bruno Agostini ◽  
John Richard Thome ◽  
Matteo Fabbri ◽  
Bruno Michel ◽  
Daniele Calmi ◽  
...  

Author(s):  
Hailei Wang ◽  
Richard Peterson

Flow boiling and heat transfer enhancement in four parallel microchannels using a dielectric working fluid, HFE 7000, was investigated. Each channel was 1000 μm wide and 510 μm high. A unique channel surface enhancement technique via diffusion bonding a layer of conductive fine wire mesh onto the heating wall was developed. According to the obtained flow boiling curves for both the bare and mesh channels, the amount of wall superheat was significantly reduced for the mesh channel at all stream-wise locations. This indicated that the nucleate boiling in the mesh channel was enhanced due to the increase of nucleation sites the mesh introduced. Both the nucleate boiling dominated and convective evaporation dominated regimes were identified. In addition, the overall trend for the flow boiling heat transfer coefficient, with respect to vapor quality, was increasing until the vapor quality reached approximately 0.4. The critical heat flux (CHF) for the mesh channel was also significantly higher than that of the bare channel in the low vapor quality region. Due to the fact of how the mesh was incorporated into the channels, no pressure drop penalty was identified for the mesh channels. Potential applications for this kind of mesh channel include high heat-flux electronic cooling systems and various energy conversion systems.


Author(s):  
Satish G. Kandlikar

Research efforts on flow boiling in microchannels were focused on stabilizing the flow during the early part of the last decade. After achieving that goal through inlet restrictors and distributed nucleation sites, the focus has now shifted on improving its performance for high heat flux dissipation. The recent worldwide efforts described in this paper are aimed at increasing the critical heat flux (CHF) while keeping the pressure drop low, with an implicit goal of dissipating 1 kW/cm2 for meeting the high-end target in electronics cooling application. The underlying mechanisms in these studies are identified and critically evaluated for their potential in meeting the high heat flux dissipation goals. Future need to simultaneously increase the CHF and the heat transfer coefficient (HTC) has been identified and hierarchical integration of nanoscale and microscale technologies is deemed necessary for developing integrated pathways toward meeting this objective.


2015 ◽  
Vol 137 (2) ◽  
Author(s):  
Amen Younes ◽  
Ibrahim Hassan

Dry-out is an essential phenomenon that has been observed experimentally in both slug and annular flow regimes for flow boiling in mini and microchannels. The dry-out leads to a drastic drop in heat transfer coefficient, reversible flow and may cause a serious damage to the microchannel. Consequently, the study and prediction of this phenomenon is an essential objective for flow boiling in microchannels. The aim of this work is to develop an analytical model to predict the critical heat flux (CHF) based on the prediction of liquid film variation in annular flow regime for flow boiling in a horizontal uniformly heated circular microtube. The model is developed by applying one-dimensional (1D) separated flow model for a control volume in annular flow regime for steady, and sable saturated flow boiling. The influence of interfacial shear and inertia force on the liquid film thickness is taken into account. The effects of operating conditions, channel sizes, and working fluids on the CHF have been investigated. The model was compared with 110 CHF data points for flow boiling of various working fluids, (water, LN2, FC-72, and R134a) in single and multiple micro/minichannels with diameter ranges of (0.38≤Dh≤3.04 mm) and heated-length to diameter ratios in the range of (117.7 (117.7≤Lh/D≤470)470). Additionally, three CHF correlations developed for saturated flow boiling in a single microtube have been employed for the model validation. The model showed a good agreement with the experimental CHF data with mean absolute error (MAE) = 19.81%.


2013 ◽  
Vol 135 (6) ◽  
Author(s):  
Satish G. Kandlikar ◽  
Theodore Widger ◽  
Ankit Kalani ◽  
Valentina Mejia

Flow boiling in microchannels has been extensively studied in the past decade. Instabilities, low critical heat flux (CHF) values, and low heat transfer coefficients have been identified as the major shortcomings preventing its implementation in practical high heat flux removal systems. A novel open microchannel design with uniform and tapered manifolds (OMM) is presented to provide stable and highly enhanced heat transfer performance. The effects of the gap height and flow rate on the heat transfer performance have been experimentally studied with water. The critical heat fluxes (CHFs) and heat transfer coefficients obtained with the OMM are significantly higher than the values reported by previous researchers for flow boiling with water in microchannels. A record heat flux of 506 W/cm2 with a wall superheat of 26.2 °C was obtained for a gap size of 0.127 mm. The CHF was not reached due to heater power limitation in the current design. A maximum effective heat transfer coefficient of 290,000 W/m2 °C was obtained at an intermediate heat flux of 319 W/cm2 with a gap of 0.254 mm at 225 mL/min. The flow boiling heat transfer was found to be insensitive to flow rates between 40–333 mL/min and gap sizes between 0.127–1.016 mm, indicating the dominance of nucleate boiling. The OMM geometry is promising to provide exceptional performance that is particularly attractive in meeting the challenges of high heat flux removal in electronics cooling applications.


1994 ◽  
Vol 116 (1) ◽  
pp. 167-172 ◽  
Author(s):  
S. L. Lee ◽  
Z. H. Yang ◽  
Y. Hsyua

Cooling requirements in modern industrial applications, such as the removal of heat from electronic equipments, often demand the simultaneous attainment of a high heat flux and a low and relatively uniform and steady temperature of the heated surface to be cooled. The conventional single-phase convection cooling obviously cannot be expected to function adequately, since the heat flux there is directly proportional to the temperature difference between the heated surface and the surrounding medium. To maintain a high heat flux, the temperature of the heated surface usually must be kept at a high level. An attractive alternative is cooling by a spray, which takes advantage of the significant latent heat of evaporation of the liquid. However, in conventional industrial spray coolings, such as in the case of the cooling tower of a power plant, the temperature of the heated surface usually remains relatively high and is nonuniform and unsteady containing numerous flashy hot spots. In order to optimize the performance of the spray cooling of a heated surface by a mist flow, a clear understanding is required of (1) the dynamic interaction between the droplets and the carrier fluid and (2) the thermal reception of the droplets at the heated surface. It is the dynamic interaction between the phases that is causing the droplets to deposit onto the heated surface. The thermal reception at the heated wall develops mass and heat transfer leading to the mode of cooling of the heated surface. In the present study, an experimental investigation was made of the combination of the dynamic depositional behavior of droplets in a water droplet-air mist flow with the use of a specially designed particle-sizing two-dimensional laser-Doppler anemometer. Also, the heat transfer characteristics at the heated surface were investigated in relation to droplet deposition on the heated surface for wide ranges of droplet size, droplet concentration, mist flow velocity, and heat flux. It was discovered that over a certain suitable range of combination of these parameters, a superbly effective cooling scheme could be established by the evaporation on the outside surface of an ultrathin liquid film. Such a film was formed on the heated surface by the continuous deposition of fine droplets from the mist flow. Under these conditions, the heat flux is primarily related to the evaporation of the ultrathin liquid film on the heated surface and thus depends less on the temperature difference between the heated surf ace and the ambient mist flow. The heated surface is quenched to a low, relatively uniform and steady temperature at a very high level of heat flux. Heat transfer enhancement as high as seven times has been found so far. This effective heat transfer scheme is here termed mist cooling.


Author(s):  
Jianwei Gao ◽  
Hongxia Li ◽  
Saif Almheiri ◽  
TieJun Zhang

Thermal management is essential to compact devices particularly for high heat flux removal applications. As a popular thermal technology, refrigeration cooling is able to provide relatively high heat flux removal capability and uniform device surface temperature. In a refrigeration cycle, the performance of evaporator is extremely important to the overall cooling efficiency. In a well-designed evaporator, effective flow boiling heat transfer can be achieved whereas the critical heat flux (CHF) or dryout condition must be avoided. Otherwise the device surface temperature would rise significantly and cause device burnout due to the poor heat transfer performance of film boiling. In order to evaluate the influence of varying imposed heat fluxes, saturated flow boiling in the evaporator is systematically studied. The complete refrigerant flow boiling hysteresis between the imposed heat flux and the exit wall superheat is characterized. Upon the occurrence of CHF at the evaporator wall exit, the wall heat flux redistributes due to the axial wall heat conduction, which drives the dryout point to propagate upstream in the evaporator. As a result, a significant amount of thermal energy is stored in the evaporator wall. While the heat flux starts decreasing, the dryout point moves downstream and closer to the exit. The stored heat in the wall dissipates slowly and leads to the delay in rewetting or quenching, which is the key to understand and predict the flow boiling hysteresis. In order to reveal the transient heat releasing mechanism, an augmented separated-flow model is developed to predict the moving rewetting point and minimum heat flux at the evaporator exit, and the model predictions are further validated by experimental data from a refrigeration cooling testbed.


Sign in / Sign up

Export Citation Format

Share Document