Study of Aerodynamic Performance and Power Output for Residential-Scale Wind Turbines

2020 ◽  
Vol 143 (1) ◽  
Author(s):  
Alaa S. Hasan ◽  
Mohammed Abousabae ◽  
Abdel Rahman Salem ◽  
Ryoichi S. Amano

Abstract This study presents the rotor blade airfoil analysis of residential-scale wind turbines. On this track, four new airfoils (GOE 447, GOE 446, NACA 6412, and NACA 64(3)-618) characterized by their high lift-to-drag ratios (161.3, 148.7, 142.7, and 136.3, respectively). These new airfoils are used to generate an entire 7 m long blades for three-bladed rotor horizontal axis wind turbine models tested numerically at low, medium, and rated wind speeds of 7.5, 10, and 12.5 m/s, respectively, with a design tip speed ratio of 7. The criterion to judge each model’s performance is power output. Thus, the blades of the model that produce the highest power are selected to undergo a tip modification (winglet) and leading-edge modification (tubercles), seeking power improvement. It is found that the GOE 447 airfoil outperformed the other three airfoils at all tested wind speeds. Thus, it is opted for adding winglets and tubercles. At 12.5 m/s, winglet design produced 5% more power, while tubercles produced 5.5% more power than the GOE 447 baseline design. Furthermore, the computational domain is divided into two regions: rotating (the disc that encloses the rotor) and stationary (the rest of the flow domain). Meanwhile, the numerical model is validated against the experimental velocity measurements. Since Reynolds-averaged Navier–Stokes with k–ω shear stress transport turbulence model can capture the laminar-to-turbulent boundary layer transition, it is used in the 18 simulations of the current work. However, large eddy simulation (LES) can deal successfully with the various scale eddies resulting from the rotor blades and its interactions with the surrounding flow. Thus, the LES was used in the six simulations done at the rated wind speed. LES power output calculation is 7.9% to 11.9% higher than the RANS power output calculation.

Author(s):  
Sander Mertens ◽  
Gijs van Kuik ◽  
Gerard van Bussel

Small wind turbines sited on a flat roof have good opportunities to become widespread. They operate in the accelerated wind above the roof and deliver the power where it is needed. Since the power produced offsets that which would otherwise be bought from the utility, they reduce energy demand and bills from the utility. Furthermore excess power can be sold back to the utility, thus producing income as well. Flow over a building separates at the roof leading edge at a certain angle. Wind turbines sited well above the roof thus operate in skewed flow. H-Darrieus operating at (flat) roofs just recently start to be at public interest, operation of an H-Darrieus in skewed flow is thus not discussed in literature until now. To examine this, a model of an H-Darrieus with high Tip Speed Ratio (λ) in skewed flow is developed. The model is based on multiple stream-tube theory: a combination of axial momentum and blade element theory on an actuator plate representation of the rotor, which is divided into multiple stream-tubes. The model shows that, for an H-Darrieus designed for skewed flow, the optimal power output in skewed flow can be up to two times the power output in normal - perpendicular to the H-Darrieus axis- flow. The spatial dimension of the H-Darrieus is responsible for this.


2021 ◽  
Vol 30 (1) ◽  
pp. 201-220
Author(s):  
Tabrej Khan ◽  
Balbir Singh ◽  
Mohamed Thariq Hameed Sultan ◽  
Kamarul Arifin Ahmad

As the world focuses more on clean and green Earth, wind energy plays a significant role. Wind energy is a renewable source of energy that can cope with the ongoing global fossil fuel crisis. The wind energy converters like wind turbines have been studied a lot in terms of design and performance. The current work includes analyzing the output effects of a horizontal axis wind turbine (HAWT) with a modified blade configuration at specific wind speeds. A numerical investigation is carried out using two different numerical software on the chosen airfoil used in blade design validated with the analysis carried out in open-loop wind tunnels. The study is divided into two phases: first, the selected airfoil is tested experimentally and using CFD, and then the findings are compared to those of the University of Illinois Urbana Champaign wind tunnel tests at low Reynolds numbers. The second phase includes the numerical analysis based on the blade element momentum method and non-linear lifting line simulations of modified blade design at high Reynolds number. The numerical results of rotor performance analysis have been compared to existing experimental results. The findings of all numerical investigations agree with those of the experiments. An optimal value of the power coefficient is obtained at a particular tip speed ratio close to the desired value for large wind turbines. For maximum power, this study investigates the optimum pitch angle. The work demonstrated the improved HAWT rotor blade design to produce better aerodynamic lift and thus improve performance.


Author(s):  
G. Kröger ◽  
U. Siller ◽  
J. Dabrowski

Small scale wind turbines can meet a substantial part of the electricity demand of residential buildings and facilities in isolated areas. It is a curious fact, however, that for many of these systems the actual power output has been dramatically overestimated. This can be partially explained by the very high rated wind speeds at which the design power output applies. The current work depicts the pathway to an aerodynamically optimized design of a small scale horizontal axis wind turbine in the 1kW class, optimized for wind speeds between 3.5 m/s and 5.5 m/s, a typical range of the energetic average of urban wind speeds. The aerodynamic stability of the blade has been a particular focus leading to a nearly constant efficiency over a range of wind speeds. The rotating speed of the system is adjusted to the optimal tip speed ratio at wind speeds up to maximum power via active control of the aerodynamic torque of the rotor blades. This is realized by adapting the generator torque to the current wind speed guaranteeing optimal efficiency and power output. The rotor blade optimization has been conducted unconventionally, in a turbomachinery-inspired 3D-blade design optimization campaign, using high-fidelity compressible CFD. This approach is described in detail, focussing on geometry parametrization and the numerical model with reasonable boundary conditions. Finally, the aerodynamic performance of the rotor blade is assessed at different wind speeds and pitching angles.


1987 ◽  
Author(s):  
Clifford J. Obara ◽  
C. P. van Dam

In this paper, foil and planform parameters which govern the level of viscous drag produced by the keel of a sailing yacht are discussed. It is shown that the application of laminar boundary-Layer flow offers great potential for increased boat speed resulting from the reduction in viscous drag. Three foil shapes have been designed and it is shown that their hydro­dynamic characteristics are very much dependent on location and mode of boundary-Layer transition. The planform parameter which strongly affects the capabilities of the keel to achieve laminar flow is lea ding-edge sweep angle. The two significant phenomena related to keel sweep angle which can cause premature transition of the laminar boundary layer are crossflow instability and turbulent contamination of the leading-edge attachment line. These flow phenomena and methods to control them are discussed in detail. The remaining factors that affect the maintainability of laminar flow include surface roughness, surface waviness, and freestream turbulence. Recommended limits for these factors are given to insure achievability of laminar flow on the keel. In addition, the application of a simple trailing-edge flap to improve the hydrodynamic characteristics of a foil at moderate-to-high leeway angles is studied.


Author(s):  
Abolfazl Pourrajabian ◽  
Reza Ebrahimi ◽  
Masoud Mirzaei ◽  
Mehdi Ahmadizadeh ◽  
David Wood

Since the air density reduces as the altitude increases, operation of Small Wind Turbines (SWTs) which usually have no pitch mechanism, remains as a challengeable task at high altitudes due largely to the reduction of starting aerodynamic torque. By reducing the blades moment of inertia through the use of hollow blades, the study aims to mitigate that issue and speed up the starting. A three-bladed, 2 m diameter small horizontal axis wind turbine with hollow cross-section was designed for operating at two sites with altitude of 500 and 3,000 m. The design variables consist of distribution of the chord, twist and shell thickness along the blade. The blade-element momentum theory was employed to calculate the output power and starting time and, the beam theory was used for the structural analysis to investigate whether the hollow blades could withstand the aerodynamic and centrifugal forces. A combination of the starting time and the output power was included in an objective function and then, the genetic algorithm was used to find a blade for which the output power and the starting performance, the goals of the objective function, are high while the stress limitation, the objective function constraint, is also met. While the resultant stresses remain below the allowable stress, results show that the performance of the hollow blades is far better than the solid ones such that their starting time is shorter than the solid blades by approximately 70%. However, in the presence of the generator resistive torque, the algorithm could not find the blade for the altitude near to 3000 m. To solve that problem, the tip speed ratio of the turbine was added to other design variables and another optimization process was done which led to the optimal blades not only for the lower altitude but also for the higher one.


Author(s):  
Jesse M. McCarthy ◽  
Arvind Deivasigamani ◽  
Sabu J. John ◽  
Simon Watkins ◽  
Floreana Coman

We investigated the behaviour of a polyvinylidene-fluoride piezoelectric strip (‘stalk’) clamped at the leading edge, and hinged to an amplification device (‘leaf’) at the trailing edge. Flutter of this cantilevered system was induced within smooth, parallel flow, and an AC voltage was generated from the PVDF strip. A polypropylene, triangle comprised the leaf. Two leaf parameters were varied so as to quantify their effect on the power output of the system: 1) the area, and 2) the aspect ratio. It was found that the highest power output was realised with the 2nd-largest leaf across a range of wind speeds, but the variation in power measurements was large. Thus, the 3rd-largest leaf was found to give the highest power output with the lowest power variation. This leaf area was then fixed and the aspect ratio varied. It was found that the largest aspect ratio-leaf rendered the highest power output, but had a relatively high start-up wind speed.


Author(s):  
Manoj Kumar Chaudhary ◽  
◽  
S. Prakash ◽  

In this study, small horizontal-axis wind turbine blades operating at low wind speeds were optimized. An optimized blade design method based on blade element momentum (BEM) theory was used. The rotor radius of 0.2 m, 0.4 m and 0.6 m and blade geometry with single (W1 & W2) and multistage rotor (W3) was examined. MATLAB and XFoil programs were used to implement to BEM theory and devise a six novel airfoil (NAF-Series) suitable for application of small horizontal axis wind turbines at low Reynolds number. The experimental blades were developed using the 3D printing additive manufacturing technique. The new airfoils such as NAF3929, NAF4420, NAF4423, NAF4923, NAF4924, and NAF5024 were investigated using XFoil software at Reynolds numbers of 100,000. The investigation range included tip speed ratios from 3 to 10 and angle of attacks from 2° to 20°. These parameters were varied in MATLAB and XFoil software for optimization and investigation of the power coefficient, lift coefficient, drag coefficient and lift-to-drag ratio. The cut-in wind velocity of the single and multistage rotors was approximately 2.5 & 3 m/s respectively. The optimized tip speed ratio, axial displacement and angle of attack were 5.5, 0.08m & 6° respectively. The proposed NAF-Series airfoil blades exhibited higher aerodynamic performances and maximum output power than those with the base SG6043 and NACA4415 airfoil at low Reynolds number.


2021 ◽  
Vol 104 ◽  
pp. 83-88
Author(s):  
Rahmat Wahyudi ◽  
Diniar Mungil Kurniawati ◽  
Alfian Djafar

The potential of wind energy is very abundant but its utilization is still low. The effort to utilize wind energy is to utilize wind energy into electrical energy using wind turbines. Savonius wind turbines have a very simple shape and construction, are inexpensive, and can be used at low wind speeds. This research aims to determine the effect of the slot angle on the slotted blades configuration on the performance produced by Savonius wind turbines. Slot angle variations used are 5o ,10o , and 15o with slotted blades 30% at wind speeds of 2,23 m/s to 4,7 m/s using wind tunnel. The result showed that a small slot angle variation of 5o produced better wind turbine performance compared to a standard blade at low wind speeds and a low tip speed ratio.


Author(s):  
Jonathan H. Watmuff

Experiments are described in which well-defined FSN (Free Stream Nonuniformity) distributions are introduced by placing fine wires upstream of the leading edge of a flat plate. Large amplitude spanwise thickness variations are present in the downstream boundary layer resulting from the interaction of the laminar wakes with the leading edge. Regions of elevated background unsteadiness appear on either side of the peak layer thickness, which share many of the characteristics of Klebanoff modes, observed at elevated Free Stream Turbulence (FST) levels. However, for the low background disturbance level of the free stream, the layer remains laminar to the end of the test section (Rx ≈ l.4×106) and there is no evidence of bursting or other phenomena associated with breakdown to turbulence. A vibrating ribbon apparatus is used to demonstrate that the deformation of the mean flow is responsible for substantial phase and amplitude distortion of Tollmien-Schlichting (TS) waves. Pseudo-flow visualization of hot-wire data shows that the breakdown of the distorted waves is more complex and occurs at a lower Reynolds number than the breakdown of the K-type secondary instability observed when the FSN is not present.


Sign in / Sign up

Export Citation Format

Share Document