Effect of Slotted Angle on Savonius Wind Turbine Performance

2021 ◽  
Vol 104 ◽  
pp. 83-88
Author(s):  
Rahmat Wahyudi ◽  
Diniar Mungil Kurniawati ◽  
Alfian Djafar

The potential of wind energy is very abundant but its utilization is still low. The effort to utilize wind energy is to utilize wind energy into electrical energy using wind turbines. Savonius wind turbines have a very simple shape and construction, are inexpensive, and can be used at low wind speeds. This research aims to determine the effect of the slot angle on the slotted blades configuration on the performance produced by Savonius wind turbines. Slot angle variations used are 5o ,10o , and 15o with slotted blades 30% at wind speeds of 2,23 m/s to 4,7 m/s using wind tunnel. The result showed that a small slot angle variation of 5o produced better wind turbine performance compared to a standard blade at low wind speeds and a low tip speed ratio.

2018 ◽  
Vol 4 (2) ◽  
pp. 93
Author(s):  
Delffika - Canra ◽  
Meri Rahmi ◽  
Emin Haris

Generally, wind energy sources in Indonesia's coastal areas is one of the potential sources of renewable energy (renewable energy resources) which are abundant, environmentally friendly and renewable. Savonius wind turbines can produce relatively high torque even at low wind speeds. Because it is very well developed to produce electrical energy. To get a large electric power, a large turbine construction is also needed which also certainly requires a large cost. For this reason, it is necessary to develop the dimensions of this wind turbine construction which is known as aspect ratio (Ar). The Ar that has been researched is the blade section, and other values. While the arch depth or the length of the blade arc in U -type is still likely to be researched. Therefore, it is necessary to do research on the U-type blade arc to get greater power than before. In addition to the experimental method with a prototype of the U type Savonius wind turbine with a number of 2 blades, a software-based simulation method will be carried out to analyze the air flow on the wind turbine blade. Parameters varied only with the aspect ratio of the arc length and blade cross section width, other parameters follow the previous research. This analysis will be a comparative data with experimental methods. The expected simulation results obtain the best aspect ratio (Ar) blade in capturing wind energy.


2019 ◽  
Vol 6 (1) ◽  
pp. 64
Author(s):  
Jamal Jamal

Savonius wind turbines are wind turbines that canoperate at low wind speeds, this type of turbine is very suitable tobe used in several places in Indonesia. The research aims toimprove the performance of the Savonius wind turbine withvariations in the number of turbine blades as well as variations inthe velocity of wind speed. The research method wasexperimental where wind turbine testing was carried out withvariations in the number of turbine blades with number of 2, 3and 4 blades, other variations carried out were wind speed at 3.5;4,5; 5.5 and 6.5 m/s. The study results show that the 2-bladeturbine produces greater rotation, but the torque moment islower than the 3 and 4 blade turbines, this can be seen in the lowefficiency of the 2 blade turbine at low wind speeds with highloading. At 3.5 m / s wind turbines 2 blade turbines haveefficiency that tends to be the same as 3 and 4 blade turbines upto 0.5 N but at loads of 0.6 - 1.2 N 2 blade turbines have lowerefficiency, while at wind speeds of 4.5 - 6.5 m / s 2 blade turbineshave greater efficiency than turbines 3 and 4 blades up to a loadof 1.2 N but if the load is added then the efficiency of 2-bladeturbines can be smaller than efficiency 3 and 4-blade.


2016 ◽  
Vol 6 (2) ◽  
Author(s):  
I.B. Alit ◽  
Nurchayati Nurchayati ◽  
S.H. Pamuji

Wind turbine is a technology that converts wind energy to electric power. A Savonius type rotor blade is a simple wind turbine that operates on the concept of drag. The turbine has a potential to be developed as it has a simple construction and it is suitable for low wind speeds. Savonius rotor can be designed with two or three blades in single level or multi-levels. This research was conducted to obtain two levels wind turbine performance characteristics with variations in wind speed and different positions of angle on each level. The variations of the angle position of the wind turbine were 0°, 30°, 45°, 60°, and 90° in each stage. The result shows that the performance of the wind turbine is inversely to the degree of the angle position. The maximum rotation speed of the rotor was about 150.6 rpm that was generated at the wind speed of 5 m/s and the angle position of 0°. 


Author(s):  
S. G. Ignatiev ◽  
S. V. Kiseleva

Optimization of the autonomous wind-diesel plants composition and of their power for guaranteed energy supply, despite the long history of research, the diversity of approaches and methods, is an urgent problem. In this paper, a detailed analysis of the wind energy characteristics is proposed to shape an autonomous power system for a guaranteed power supply with predominance wind energy. The analysis was carried out on the basis of wind speed measurements in the south of the European part of Russia during 8 months at different heights with a discreteness of 10 minutes. As a result, we have obtained a sequence of average daily wind speeds and the sequences constructed by arbitrary variations in the distribution of average daily wind speeds in this interval. These sequences have been used to calculate energy balances in systems (wind turbines + diesel generator + consumer with constant and limited daily energy demand) and (wind turbines + diesel generator + consumer with constant and limited daily energy demand + energy storage). In order to maximize the use of wind energy, the wind turbine integrally for the period in question is assumed to produce the required amount of energy. For the generality of consideration, we have introduced the relative values of the required energy, relative energy produced by the wind turbine and the diesel generator and relative storage capacity by normalizing them to the swept area of the wind wheel. The paper shows the effect of the average wind speed over the period on the energy characteristics of the system (wind turbine + diesel generator + consumer). It was found that the wind turbine energy produced, wind turbine energy used by the consumer, fuel consumption, and fuel economy depend (close to cubic dependence) upon the specified average wind speed. It was found that, for the same system with a limited amount of required energy and high average wind speed over the period, the wind turbines with lower generator power and smaller wind wheel radius use wind energy more efficiently than the wind turbines with higher generator power and larger wind wheel radius at less average wind speed. For the system (wind turbine + diesel generator + energy storage + consumer) with increasing average speed for a given amount of energy required, which in general is covered by the energy production of wind turbines for the period, the maximum size capacity of the storage device decreases. With decreasing the energy storage capacity, the influence of the random nature of the change in wind speed decreases, and at some values of the relative capacity, it can be neglected.


2021 ◽  
Vol 3 (8) ◽  
Author(s):  
M. Niyat Zadeh ◽  
M. Pourfallah ◽  
S. Safari Sabet ◽  
M. Gholinia ◽  
S. Mouloodi ◽  
...  

AbstractIn this paper, we attempted to measure the effect of Bach’s section, which presents a high-power coefficient in the standard Savonius model, on the performance of the helical Savonius wind turbine, by observing the parameters affecting turbine performance. Assessment methods based on the tip speed ratio, torque variation, flow field characterizations, and the power coefficient are performed. The present issue was stimulated using the turbulence model SST (k- ω) at 6, 8, and 10 m/s wind flow velocities via COMSOL software. Numerical simulation was validated employing previous articles. Outputs demonstrate that Bach-primary and Bach-developed wind turbine models have less flow separation at the spoke-end than the simple helical Savonius model, ultimately improving wind turbines’ total performance and reducing spoke-dynamic loads. Compared with the basic model, the Bach-developed model shows an 18.3% performance improvement in the maximum power coefficient. Bach’s primary model also offers a 12.4% increase in power production than the initial model’s best performance. Furthermore, the results indicate that changing the geometric parameters of the Bach model at high velocities (in turbulent flows) does not significantly affect improving performance.


2020 ◽  
Vol 1 (2) ◽  
pp. 61-67
Author(s):  
Mohammad Rizqi Saputra ◽  
Nur Kholis ◽  
Mohammad Munib Rosadi

Abstract Wind is a renewable mechanical energy source that can be used as an energy source because the energy from the wind can be used to drive wind turbines. Savonius wind turbine type L is a tool to convert wind energy into electricity with a simple construction and can work with low wind speeds. The purpose of this study was to determine the effect of differences in diameter and number of blades on the power produced. The method used is a simulation method with an artificial wind source. With a wind speed of 8 m/s. The data analysis technique used is 2-way ANOVA using the SPSS application. Variations used are 20 cm and 40 cm in diameter and the number of blades 2 and 4 . The result is a wind turbine with a variation of 40 cm and 4 blades capable of producing the best output which produces 350.98 RPM voltage of 11.64 volts current of 0.144 amperes and power of 1,676 watts. As for BHP, torque, and turbine efficiency with a variation of 40 cm and 4 blades capable of producing the best output where the generated BHP is 3.352 watts, torque 0.091 N / m efficiency 2.17. For the results of calculations with SPSS wind turbines with a diameter variation of 40 cm and 4 blades, the biggest power is 1,744 watts and for BHP produces 3.3520 watts and the efficiency reaches 2.17%. Keyword : Diameter, number of blade, Performance Abstrak Angin adalah sumber energi mekanik yang bisa diperbaharui sehingga dapat dimanfaatkan sebagai sumber energi karena dapat digunakan untuk menggerakkan turbin angin. Turbin angin savonius tipe L merupakan alat untuk mengubah energi angin menjadi listrik dengan konstruksi yang sederhana dan dapat bekerja dengan kecepatan angin yang rendah. Tujuan penelitian ini untuk mengetahui pengaruh perbedaan diameter dan jumlah sudu terhadap unjuk kerja yang dihasilkan. Metode yang digunakan adalah metode simulasi dengan sumber angin buatan. Dengan kecepatan angin 8 m/s. Teknik analisis data yang digunakan adalah ANOVA 2 arah dengan menggunakan aplikasi SPSS. Variasi yang digunakan adalah diameter 20 cm dan 40 cm serta jumlah sudu 2 dan 4. Hasilnya turbin angin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output terbaik yang dimana menghasilkan RPM 350,98 tegangan 11,64 volt arus 0,144 ampere dan daya 1,676 watt. Sedangkan untuk BHP, torsi, dan efisensi turbin dengan variasi 40 cm dan 4 sudu mampu menghasilkan output yang terbaik dimana BHP yang dihasilkan adalah 3,352 watt, torsi 0,091 N/m efisisensi 2,17. Untuk hasil perhitungan dengan SPSS turbin angin dengan variasi diameter 40 cm dan 4 sudu menghasilkan daya terbesar yakni 1,744 watt dan untuk BHP menghasilkan 3,3520 watt dan efisiensinya mencapai 2,17 % untuk torsi tertinggi dicapai turbin variasi 40 cm 2 sudu dengan torsi 0,116.   Kata kunci : diameter, jumlah sudu, unjuk kerja


Author(s):  
Sivamani Seralathan ◽  
Micha Premkumar Thomai ◽  
Rian Leevinson Jayakumar ◽  
Basireddy Venkata Lokesh Reddy ◽  
Hariram Venkatesan

Abstract Due to increase in energy demand along with environmental awareness, the attention is shifting towards renewable energy sources. A wind turbine developed from Banki water turbine is used in this study as it starts at low-wind speeds and has high starting torque. Experimental investigations are carried out on a test rig equipped with open jet wind tunnel with wind velocity varying from 7 to 11 m/s. Later, 3D steady-state numerical analyses are performed using ANSYS CFX for better understanding of the flow physics of cross flow VAWT. The experimental investigations revealed that cross flow VAWT has a good self-starting ability at relatively low-wind speeds. A peak power coefficient (Cp, max) value of 0.059 is observed for the tip speed ratio (λ) of 0.30. As the tip speed ratio is raised further, the Cp value is observed to decrease gradually. The numerical simulations reveal the reason for the drop in Cp value. This is due to lessening of positive interaction between the flow and cross flow VAWT blades at higher λ due to vortex formation. The torque coefficient is found to decrease almost linearly from a peak value of around 0.49 at λ = 0 to a value of 0 around λ = 0.60. Polar plot between angle and torque shows that torque output of the turbine is nearly same in all directions which reinforce the potency of cross flow VAWT to be omni-directional as it produces the same performance regardless of wind directions.


Author(s):  
Praveen Laws ◽  
Rajagopal V Bethi ◽  
Pankaj Kumar ◽  
Santanu Mitra

Nonrenewable fossil fuels are finite resources that will ultimately deplete in near future. Nature sheds colossal amount of renewable wind energy but humans harvest a morsel. Taking this into account a numerical study is proposed on wind energy harvesting from a speeding subway train. Subways trains generate a remarkable gust of wind that can be transferred to useful electrical energy on daily basis. To this aim, a numerical analysis is modeled by placing Savonius wind turbine in a subway tunnel to crop the wind energy produced from the speeding train. The passage of train in the tunnel generates very high velocity slipstreams along the length of the tunnel. The slipstream phenomena develop a boundary layer regime that will be absorbed by the Savonius wind turbine to self-start and generate power. In the present study, a two-dimensional numerical simulation with modified turbine blade design is carried out using open source tool OpenFOAM® with PimpleDyMFoam solver coupled with six degrees of freedom mesh motion solver sixDoFRigidBodyMotion and k–ɛ turbulence modeling, to measure the amount of torque predicted by the rotor from the gust of wind produced by the speeding train in the tunnel. Being a self-start turbine with no yaw mechanism required the turbine collects air from any direction and converts it into useful power.


Author(s):  
Anggara Trisna Nugraha ◽  
Dadang Priyambodo

Indonesia, which is a tropical country, has a very large potential for solar energy because of its area that stretches across the equator, with a radiation magnitude of 4.80 kWh / m2 / day or equivalent to 112,000 GWp. On the other hand, the earth receives solar power of 1.74 x 1017 W / hour and about 1-2% of it is converted into wind energy. However, from the total energy potential, Indonesia has only utilized around 10 MWp for solar energy and not much different, wind energy, whose utilization is planned to reach 250 MW in 2025, has only been utilized around 1 MW of the total existing potential. With this potential, to be able to supply additional power and help save energy for existing facilities in the building, a Prototype of Solar Panel Hybird and Vertical Axis Wind Turbine was created. The design of this prototype is a combination of savonious type turbines and solar panels, where the use of this type of turbine is because it can rotate at low wind speeds (low wind velocity) and its construction is very simple.


2021 ◽  
Vol 14 (1) ◽  
pp. 16
Author(s):  
Wahyu Santoso ◽  
Herman Saputro ◽  
Husin Bugis

<p><em>Energy from fossil fuels consisting of petroleum, coal, natural gas containing raw material for energy fulfillment in Indonesia is still very central through the use of raw materials from renewable energy is still very low. In Indonesia the potential for renewable energy such as wind energy needs to be optimized. One of the uses of wind energy is through savonius wind turbine as electricity generators. Characteristics of savonius wind turbine with vertical axis rotors which gave a simple shape, and that able to control low speeds. This is in accordance with regions in Indonesi which have low average speeds.         This experimental study, aims to determine the description of wind potential and determine the performance of savonius wind turbines on the coast of Demak regency on the electrical energy produced. Savonius wind turbine used is made of galvalum material in the form of an S type rotor with diameter 1.1 m and height 1.4 m, using pulley transmission system with multiplication ratio 1:6 dan using generator type PMG 200 W. This research uses the method experiment. Data collection in the form of wind speed, humidity, temperature, rotor rotation speed, voltage and electric curret is carried out at 14.30 to 17.30 Western Indonesian Time. Data Analysis in this study uses quantitative descriptive analysis. The result showed the potential of wind on the coast of Demak regency have an average wind speed of 2,02 m/s with a temperature of 31</em><em>,</em><em>34 </em><em><sup>0</sup></em><em>C and humidity of 76,96. And the performance of the installed wind turbine produces the highest power 3.5 watt with an electric power coefficient of 0,181 and tip speed ratio around 1,75. From these result, the potensial of wind with performance savonius turbine can generate electricity used for pond lighting in the village Berahan Kulon Kecamatan Wedung. </em><em></em></p>


Sign in / Sign up

Export Citation Format

Share Document