Review of Computational Fluid Dynamics Studies on Chemical Looping Combustion

2020 ◽  
Vol 143 (8) ◽  
Author(s):  
Yali Shao ◽  
Ramesh K. Agarwal ◽  
Xudong Wang ◽  
Baosheng Jin

Abstract Chemical looping combustion (CLC) is an attractive technology to achieve inherent CO2 separation with low energy penalty. In CLC, the conventional one-step combustion process is replaced by two successive reactions in two reactors, a fuel reactor (FR) and an air reactor (AR). In addition to experimental techniques, computational fluid dynamics (CFD) is a powerful tool to simulate the flow and reaction characteristics in a CLC system. This review attempts to analyze and summarize the CFD simulations of CLC process. Various numerical approaches for prediction of CLC flow process are first introduced and compared. The simulations of CLC are presented for different types of reactors and fuels, and some key characteristics including flow regimes, combustion process, and gas-solid distributions are described in detail. The full-loop CLC simulations are then presented to reveal the coupling mechanisms of reactors in the whole system such as the gas leakage, solid circulation, redox reactions of the oxygen carrier, fuel conversion, etc. Examples of partial-loop CLC simulation are finally introduced to give a summary of different ways to simplify a CLC system by using appropriate boundary conditions.

Author(s):  
Baosheng Jin ◽  
Rui Xiao ◽  
Zhongyi Deng ◽  
Qilei Song

To concentrate CO2 in combustion processes by efficient and energy-saving ways is a first and very important step for its sequestration. Chemical looping combustion (CLC) could easily achieve this goal. A chemical-looping combustion system consists of a fuel reactor and an air reactor. Two reactors in the form of interconnected fluidized beds are used in the process: (1) a fuel reactor where the oxygen carrier is reduced by reaction with the fuel, and (2) an air reactor where the reduced oxygen carrier from the fuel reactor is oxidized with air. The outlet gas from the fuel reactor consists of CO2 and H2O, while the outlet gas stream from the air reactor contains only N2 and some unused O2. The water in combustion products can be easily removed by condensation and pure carbon dioxide is obtained without any loss of energy for separation.Until now, there is little literature about mathematical modeling of chemical-looping combustion using the computational fluid dynamics (CFD) approach. In this work, the reaction kinetic model of the fuel reactor (CaSO4+ H2) is developed by means of the commercial code FLUENT and the effects of partial pressure of H2 (concentration of H2) on chemical looping combustion performance are also studied. The results show that the concentration of H2 could enhance the CLC performance.


2017 ◽  
Vol 139 (4) ◽  
Author(s):  
Ronald W. Breault ◽  
Justin Weber ◽  
Doug Straub ◽  
Sam Bayham

The National Energy Technology Laboratory (NETL) has explored chemical looping in its 50 kWth facility using a number of oxygen carriers. In this work, the results for methane conversion in the fuel reactor with a hematite iron ore as the oxygen carrier are analyzed. The experimental results are compared to predictions using CPFD's barracuda computational fluid dynamics (CFD) code with kinetics derived from the analysis of fixed bed data. It has been found through analytical techniques from thermal gravimetric analysis data as well as the same fixed bed data that the kinetics for the methane–hematite reaction follows a nucleation and growth or Johnson–Mehl–Avrami (JMA) reaction mechanism. barracuda does not accept nucleation and growth kinetics; however, there is enough sufficient variability of the solids dependence within the software such that the nucleation and growth behavior can be mimicked. This paper presents the method to develop the pseudo-JMA kinetics for barracuda extracted from the fixed bed data and then applies these values to the fuel reactor data to compare the computational results to experimental data obtained from 50 kWth unit for validation. Finally, a fuel reactor design for near complete conversion is proposed.


2013 ◽  
Vol 800 ◽  
pp. 454-458
Author(s):  
Wen Yan Li ◽  
Ming Zhong Gao

In this paper, Computational Fluid Dynamics (CFD) was used to simulate the magnetic device for the separation of Fe-base oxygen carrier in chemical-looping combustion system. The simulation was based on the Euler multiphase flow model and the k-ε turbulence model, which uses UDF programming to increase volume source phase. Here, commercial computational fluid dynamics software fluent platform was used to build the air reactor cold flow mathematical model, magnetic field under the conditions of different flow conditions were added for separating the Fe3O4 and Fe2O3. And the simulation results has an important understanding of the process of scientific significance, and will promote the fundamental understanding and applications of the Fe-base oxygen carrier.


2014 ◽  
Vol 955-959 ◽  
pp. 2261-2266
Author(s):  
Xiao Ning Gao ◽  
Hui Min Xue ◽  
Yuan Li ◽  
Xue Feng Yin

In order to reduce the emission of CO2and control the global greenhouse effect, the paper introduces and compares two new technologies named chemical-looping combustion (CLC) and chemical-looping with oxygen uncoupling (CLOU) that are both high-efficient and clean. Through comparative analysis, CLC has been widely studied because of its direct separation of CO2, reduction loss of the heat, improvement of energy efficiency and avoiding of the generation of fuel type NOxin the combustion process. Besides the current research for metal oxygen carrier, there are some scholars find various non-metal oxygen carriers that have the better performance in CLC. But the study on reactors of CLC is still not mature, especially the solid fuel reactor, which is different from CLOU. In a certain sense, CLOU is an improved technology based CLC, besides the bove advantages, it also can react with coal directly. Many scholars use coal as fuel in the fluidized bed by the technology of CLOU, and the results of them are feasible. So from this perspective, CLOU technology has more broad prospects than CLC in the China.


Processes ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 603 ◽  
Author(s):  
Wang ◽  
Liu ◽  
Zhang ◽  
Zhang ◽  
Jin

The in-depth understanding of the gas–solid flow and reaction behaviors, and their coupling characteristics during the chemical looping combustion (CLC) process has the guiding significance for the operation and optimization of a chemical looping combustor. A three-dimensional numerical model is applied to investigate the char-fueled CLC characteristics in a fuel reactor for efficient CO2 separation and capture. Simulations are carried out in a bubbling fluidized bed fuel reactor with a height of 2.0 m and a diameter of 0.22 m. The initial bed height is 1.1 m, and hence the height–diameter ratio of the slumped bed is five. The oxygen carrier is prepared with 14 wt% of CuO on 86 wt% of inert Al2O3. In the process of mathematical modeling, a Eulerian-Eulerian two-fluid model is adopted for both of the gas and solid phases. Gas turbulence is modeled on the basis of a k–ε turbulent model. The reaction kinetics parameters are addressed based upon previous experimental investigations from literature. During the simulation, the gas–solid flow patterns, composition distributions, and reaction characteristics are obtained. Moreover, the effects of solids inventory and fluidizing number on the reaction performance are elucidated in-depth. The results have shown that the reaction rates have close relationship with the flow patterns and the distributions of gas concentrations. Compared to the steam-char gasification over sand, the application of char-fueled CLC can effectively promote the conversion of gasification products. In addition, higher CO2 concentration at the outlet can be achieved by increasing the initial solids inventory or decreasing the fluidizing number. Some calculated values are verified by the previous data, indicating that the current three-dimensional models are reasonable to study the process mechanism of char-fueled CLC.


Energies ◽  
2020 ◽  
Vol 13 (20) ◽  
pp. 5394
Author(s):  
Anna Zylka ◽  
Jaroslaw Krzywanski ◽  
Tomasz Czakiert ◽  
Kamil Idziak ◽  
Marcin Sosnowski ◽  
...  

This paper presents a 1.5D model of a fluidized bed chemical looping combustion (CLC) built with the use of a comprehensive simulator of fluidized and moving bed equipment (CeSFaMB) simulator. The model is capable of calculating the effect of gas velocity in the fuel reactor on the hydrodynamics of the fluidized bed and the kinetics of the CLC process. Mass of solids in re actors, solid circulating rates, particle residence time, and the number of particle cycles in the air and fuel reactor are considered within the study. Moreover, the presented model calculates essential emissions such as CO2, SOX, NOX, and O2. The model was successfully validated on experimental tests that were carried out on the Fluidized-Bed Chemical-Looping-Combustion of Solid-Fuels unit located at the Institute of Advanced Energy Technologies, Czestochowa University of Technology, Poland. The model’s validation showed that the maximum relative errors between simulations and experiment results do not exceed 10%. The CeSFaMB model is an optimum compromise among simulation accuracy, computational resources, and processing time.


Author(s):  
Zheming Zhang ◽  
Ramesh Agarwal

Chemical-looping combustion holds significant promise as one of the next generation combustion technology for high-efficiency low-cost carbon capture from fossil fuel power plants. For thorough understanding of the chemical-looping combustion process and its successful implementation in CLC based industrial scale power plants, the development of high-fidelity modeling and simulation tools becomes essential for analysis and evaluation of efficient and cost effective designs. In this paper, multiphase flow simulations of coal-direct chemical-looping combustion process are performed using ANSYS Fluent CFD code. The details of solid-gas two-phase hydrodynamics in the CLC process are investigated by employing the Lagrangian particle-tracking approach called the discrete element method (DEM) for the movement and interaction of solid coal particles moving inside the gaseous medium created due to the combustion of coal particles with an oxidizer. The CFD/DEM simulations show excellent agreement with the experimental results obtained in a laboratory scale fuel reactor in cold flow conditions. More importantly, simulations provide important insights for making changes in fuel reactor configuration design that have resulted in significantly enhanced performance.


2008 ◽  
Vol 31 (12) ◽  
pp. 1754-1766 ◽  
Author(s):  
Z. G. Deng ◽  
R. Xiao ◽  
B. S. Jin ◽  
Q. L. Song ◽  
H. Huang

Author(s):  
N R McGlashan

The poor performance of internal combustion (IC) engines can be attributed to the departure from equilibrium in the combustion process. This departure is expressed numerically, as the difference between the working fluid's temperature and an ideal ‘combustion temperature’, calculated using a simple expression. It is shown that for combustion of hydrocarbons to be performed reversibly in a single reaction, impractically high working fluid temperatures are required — typically at least 3500 K. Chemical-looping combustion (CLC) is an alternative to traditional, single-stage combustion that performs the oxidation of fuels using two reactions, in separate vessels: the oxidizer and reducer. An additional species circulates between the oxidizer and reducer carrying oxygen atoms. Careful selection of this oxygen carrier can reduce the equilibrium temperature of the two redox reactions to below current metallurgical limits. Consequently, using CLC it is theoretically possible to approach a reversible IC engine without resorting to impractical temperatures. CLC also lends itself to carbon capture, as at no point is N2 from the air allowed to mix with the CO2 produced in the reduction process and therefore a post-combustion scrubbing plant is not required. Two thermodynamic criteria for selecting the oxygen carrier are established: the equilibrium temperature of both redox reactions should lie below present metallurgical limits. Equally, both reactions must be sufficiently hot to ensure that their reaction velocity is high. The key parameter determining the two reaction temperatures is the change in standard state entropy for each reaction. An analysis is conducted for an irreversible CLC system using two Rankine cycles to produce shaft work, giving an overall efficiency of 86.5 per cent. The analysis allows for irreversibilites in turbine, boiler, and condensers, but assumes reactions take place at equilibrium. However, using Rankine cycles in a CLC system is considered impractical because of the need for high-temperature, indirect heat exchange. An alternative arrangement, avoiding indirect heat exchange, is discussed briefly.


Sign in / Sign up

Export Citation Format

Share Document