Numerical Investigation of Free Convection in a Porous Corrugated Cavity Filled With Silver (Ag) Dispersed Nano-Fluid

Author(s):  
Saurabh Bhardwaj ◽  
Amaresh Dalal

Abstract The present work examines the convective heat transfer characteristics in a two-dimensional (2D) corrugated closed cavity embedded with porous media. The cavity is considered to be filled with silver dispersed water-based nano-fluid. The bottom wall is heated uniformly and non-uniformly in two different cases keeping both side corrugated walls isothermally cold with an adiabatic top wall. The various parameters are selected to perform numerical simulation in the range of solid-volume fraction, 0% ≤ ϕ ≤ 10%, 103 ≤ Ra ≤ 106, and 10−4 ≤ Da ≤ 10−2. The investigation shows that the heat transfer rate shows an increasing trend at high values of Ra and Da due to strong buoyancy forces in uniform and non-uniform heating. However, an increase in heat transfer in uniform heating is more compared to non-uniform heating. It is also observed that the nano-fluid has a great impact on the heat transfer characteristics due to its high value of thermal conductivity and irregular motion of the particles. As a result, the average Nusselt number (Nuavg) shows an increasing trend for increasing solid-volume fraction values.

Author(s):  
Subramanian Muthukumar ◽  
Selvaraj Sureshkumar ◽  
Arthanari Malleswaran ◽  
Murugan Muthtamilselvan ◽  
Eswari Prem

Abstract A numerical investigation on the effects of uniform and non-uniform heating of bottom wall on mixed convective heat transfer in a square porous chamber filled with nanofluid in the appearance of magnetic field is carried out. Uniform or sinusoidal heat source is fixed at the bottom wall. The top wall moves in either positive or negative direction with a constant cold temperature. The vertical sidewalls are thermally insulated. The finite volume approach based on SIMPLE algorithm is followed for solving the governing equations. The different parameters connected with this study are Richardson number (0.01 ≤ Ri ≤ 100), Darcy number (10−4 ≤ Da ≤ 10−1), Hartmann number (0 ≤ Ha ≤ 70), and the solid volume fraction (0.00 ≤ χ ≤ 0.06). The results are presented graphically in the form of isotherms, streamlines, mid-plane velocities, and Nusselt numbers for the various combinations of the considered parameters. It is observed that the overall heat transfer rate is low at Ri = 100 in the positive direction of lid movement, whereas it is low at Ri = 1 in the negative direction. The average Nusselt number is lowered on growing Hartmann number for all considered moving directions of top wall with non-uniform heating. The low permeability, Da = 10−4 keeps the flow pattern same dominating the magnetic field, whereas magnetic field strongly affects the flow pattern dominating the high Darcy number Da = 10−1. The heat transfer rate increases on enhancing the solid volume fraction regardless of the magnetic field.


2014 ◽  
Vol 18 (suppl.1) ◽  
pp. 189-200 ◽  
Author(s):  
Primoz Ternik ◽  
Rebeka Rudolf

The present work deals with the natural convection in a square cavity filled with the water-based Au nanofluid. The cavity is heated on the vertical and cooled from the adjacent wall, while the other two horizontal walls are adiabatic. The governing differential equations have been solved by the standard finite volume method and the hydrodynamic and thermal fields were coupled together using the Boussinesq approximation. The main objective of this study is to investigate the influence of the nanoparticles? volume fraction on the heat transfer characteristics of Au nanofluids at the given base fluid?s (i.e. water) Rayleigh number. Accurate results are presented over a wide range of the base fluid Rayleigh number and the volume fraction of Au nanoparticles. It is shown that adding nanoparticles in a base fluid delays the onset of convection. Contrary to what is argued by many authors, we show by numerical simulations that the use of nanofluids can reduce the heat transfer rate instead of increasing it.


2011 ◽  
Vol 133 (11) ◽  
Author(s):  
K. Hari Krishna ◽  
Harish Ganapathy ◽  
G. Sateesh ◽  
Sarit K. Das

Nanofluids, solid-liquid suspensions with solid particles of size of the order of few nanometers, have created interest in many researchers because of their enhancement in thermal conductivity and convective heat transfer characteristics. Many studies have been done on the pool boiling characteristics of nanofluids, most of which have been with nanofluids containing oxide nanoparticles owing to the ease in their preparation. Deterioration in boiling heat transfer was observed in some studies. Metallic nanofluids having metal nanoparticles, which are known for their good heat transfer characteristics in bulk regime, reported drastic enhancement in thermal conductivity. The present paper investigates into the pool boiling characteristics of metallic nanofluids, in particular of Cu-H2O nanofluids, on flat copper heater surface. The results indicate that at comparatively low heat fluxes, there is deterioration in boiling heat transfer with very low particle volume fraction of 0.01%, and it increases with volume fraction and shows enhancement with 0.1%. However, the behavior is the other way around at high heat fluxes. The enhancement at low heat fluxes is due to the fact that the effect of formation of thin sorption layer of nanoparticles on heater surface, which causes deterioration by trapping the nucleation sites, is overshadowed by the increase in microlayer evaporation, which is due to enhancement in thermal conductivity. Same trend has been observed with variation in the surface roughness of the heater as well.


1994 ◽  
Vol 116 (2) ◽  
pp. 302-310 ◽  
Author(s):  
P. Furmanski ◽  
J. M. Floryan

A thermal barrier with adaptive heat transfer characteristics for applications in zero gravity environments is considered. The barrier consists of a mixture of fluid with a small volume fraction of arbitrarily oriented, randomly distributed particles of ellipsoidal shape. Heat flux control is obtained by changing the orientation of the particles. Heat flow may be increased up to several hundred times by rotating the particles from being parallel to the walls to being transverse to the walls and by increasing their aspect ratio, volume fraction, and relative thermal conductivity. An increase in the size of the particles results in the appearance of wall effects, which may substantially reduce heat flow as compared to the case of an infinite medium. Very large temperature variation is found to occur near the walls where an apparent “slip” of temperature occurs for barriers whose thickness is large compared to the particle size.


Author(s):  
Khalid N. Alammar ◽  
Lin-wen Hu

Numerical analysis is performed to examine axisymmetric laminar flow and heat transfer characteristics of colloidal dispersions of nanoparticles in water (nanofluids). Effect of volume fraction on flow and heat transfer characteristics is investigated. Four different materials, Alumina, Copper, Copper Oxide, and Graphite are considered. Heat transfer and property measurements were conducted previously for Alumina nanofluid. The measurements have shown that nanofluids can behave as homogeneous mixtures. It is found that oxide-based nanofluids offer the least heat transfer enhancement compared to elements-based nanofluids. When normalized by friction pressure drop, it is shown that graphite can have the highest effective heat transfer enhancement. For a given volume flow rate, all nanofluids exhibited linear increase in heat transfer enhancement with increasing colloids volume fraction, up to 0.05.


Author(s):  
Radu Trimbitas ◽  
Teodor Grosan ◽  
Ioan Pop

Purpose – The purpose of this paper is to theoretically study the problem of mixed convection boundary layer flow and heat transfer past a vertical needle with variable wall temperature using nanofluids. The similarity equations are solved numerically for copper nanoparticles in the based fluid of water to investigate the effect of the solid volume fraction parameter of the fluid and heat transfer characteristics. The skin friction coefficient, Nusselt number, and the velocity and temperature profiles and are graphically presented and discussed. Design/methodology/approach – The transformed system of ordinary differential equations was solved using the function bvp4c from Matlab. The relative tolerance was set to 1e-10. For the study of the stability the authors also used the bvp4c function in combination with chebfun package from Matlab. Findings – It is found that the solid volume fraction affects the fluid flow and heat transfer characteristics. The numerical results for a regular fluid and forced convection flow are compared with the corresponding results reported by Chen and Smith. The solutions exists up to a critical value of λ, beyond which the boundary layer separates from the surface and the solution based upon the boundary-layer approximations is not possible Originality/value – The paper describes how multiple (dual) solutions for the flow reversals are obtained. A stability analysis for this flow reversal has been also done showing that the lower solution branches are unstable, while the upper solution branches are stable.


Author(s):  
Ge Zhu ◽  
Qincheng Bi ◽  
Jianguo Yan ◽  
Qizheng Yuan ◽  
Haicai Lv ◽  
...  

Experiments of heat transfer characteristics of subcooled water flowing in vertical circular channels, which were off-center in rectangular blocks, were carried out under high heat fluxes up to the ITER requirements. The heating flux distributions of the channels were non-uniform in the circumferential direction, which were obtained by electrically heating the blocks directly. Two types of channels were used: smooth channel and twisted tapes channel. The surface temperature of the rectangular blocks was measured by infrared camera and thermocouples. Effect of the system pressure, mass flow rate, inlet subcooling, and equivalent heat fluxes on heat transfer were all investigated. The main attention was paid to the subcooled water heat transfer under non-uniform heating flux, and the effect of twisted tapes. Results show that subcooled boiling is more likely to become the dominant factor under the conditions of lower mass flow rates, higher heat fluxes and lower system pressures. Twisted tapes can enhance the heat transfer, which is more evident in high heat fluxes. The temperature fields in the block were calculated with a Computational Fluid Dynamics (CFD) method to obtain, which were consistent with the experimental results.


Author(s):  
Adnan Alashkar ◽  
Mohamed Gadalla

In this present paper, nanoparticles are dispersed into a base fluid, their effect on the thermophysical properties and overall heat transfer coefficient of the fluid inside a circular tube representing an absorber tube of a Parabolic Trough Solar Collector (PTSC) is studied. Different models are used to predict the effective density, specific heat capacity, viscosity and thermal conductivity of the nanofluids. For the analytical analysis, Alumina (Al2O3), Copper (Cu) and Single Wall Carbon Nanotubes (SWCNT) nanoparticles are dispersed into Therminol VP-1 oil. The resulting nanofluids are compared in terms of their thermophysical properties, their convective heat transfer characteristics and their overall heat transfer coefficient. Moreover, the effect on increasing the volume fraction on the properties and the heat transfer coefficient is studied. The computational analysis results show that the thermal conductivity increases with the increase of the volume fraction. In addition Therminol/SWCNT showed the highest thermal conductivity enhancement of 98% for a volume fraction of 3%. Further, the overall heat transfer coefficient increases with the increase of volume fraction, and Therminol/SWCNT showed the highest enhancement with 72% compared to Al2O3/Therminol and Cu/Therminol that showed an enhancement of 29% and 43% respectively.


Author(s):  
Huajie Wu ◽  
Shanwen Zhang

The study of the influence of the nanoparticle volume fraction and aspect ratio of microchannels on the fluid flow and heat transfer characteristics of nanofluids in microchannels is important in the optimal design of heat dissipation systems with high heat flux. In this work, the computational fluid dynamics method was adopted to simulate the flow and heat transfer characteristics of two types of water–Al2O3 nanofluids with two different volume fractions and five types of microchannel heat sinks with different aspect ratios. Results showed that increasing the nanoparticle volume fraction reduced the average temperature of the liquid–solid heat transfer surface and thereby improved the heat transfer capacity of the nanofluids. Meanwhile, the increase of the nanoparticle volume fraction led to a considerable increase in the pumping power of the system. Changing the aspect ratio of the microchannel effectively improved the heat transfer capacity of the heat sink. Moreover, increasing the aspect ratio effectively reduced the average temperature of the heating surface of the heat sink without significantly increasing the flow resistance loss. When the aspect ratio exceeded 30, the heat transfer coefficient did not increase with the increase of the aspect ratio. The results of this work may offer guiding significance for the optimal design of high heat flux microchannel heat sinks.


Sign in / Sign up

Export Citation Format

Share Document