Thermal Error Modeling of Rotary Axis Based on Convolutional Neural Network

Author(s):  
Chengyang Wu ◽  
Sitong Xiang ◽  
Wansheng Xiang

Abstract Rotary axes are the key components for five-axis CNC machines, while their motions are dramatically influenced by thermal issues. To precisely model the thermal error of rotary axis, a convolutional neural network (CNN) model is developed. To form data sets for the CNN, a laser interferometer is used to measure the angular positioning error at different temperatures and a thermal imager is taken to obtain thermal images of the rotary axis. The measured thermal error is fitted to a sine curve so that training parameters are reduced. And the thermal pixel values of the initial thermal image are subtracted from all the thermal images to consider the incremental thermal effect, so the influence of the initial temperature is negligible. Finally, a deep CNN model with multiple output classifications is designed to complete the data training, verifying and testing. The experimental results show that the prediction accuracy for the parameters is higher than 90%, and the percentage reduction in error is higher than 80%.

Entropy ◽  
2020 ◽  
Vol 22 (9) ◽  
pp. 949
Author(s):  
Jiangyi Wang ◽  
Min Liu ◽  
Xinwu Zeng ◽  
Xiaoqiang Hua

Convolutional neural networks have powerful performances in many visual tasks because of their hierarchical structures and powerful feature extraction capabilities. SPD (symmetric positive definition) matrix is paid attention to in visual classification, because it has excellent ability to learn proper statistical representation and distinguish samples with different information. In this paper, a deep neural network signal detection method based on spectral convolution features is proposed. In this method, local features extracted from convolutional neural network are used to construct the SPD matrix, and a deep learning algorithm for the SPD matrix is used to detect target signals. Feature maps extracted by two kinds of convolutional neural network models are applied in this study. Based on this method, signal detection has become a binary classification problem of signals in samples. In order to prove the availability and superiority of this method, simulated and semi-physical simulated data sets are used. The results show that, under low SCR (signal-to-clutter ratio), compared with the spectral signal detection method based on the deep neural network, this method can obtain a gain of 0.5–2 dB on simulated data sets and semi-physical simulated data sets.


2021 ◽  
Vol 23 (07) ◽  
pp. 1116-1120
Author(s):  
Cijil Benny ◽  

This paper is on analyzing the feasibility of AI studies and the involvement of AI in COVID interrelated treatments. In all, several procedures were reviewed and studied. It was on point. The best-analyzing methods on the studies were Susceptible Infected Recovered and Susceptible Exposed Infected Removed respectively. Whereas the implementation of AI is mostly done in X-rays and CT- Scans with the help of a Convolutional Neural Network. To accomplish the paper several data sets are used. They include medical and case reports, medical strategies, and persons respectively. Approaches are being done through shared statistical analysis based on these reports. Considerably the acceptance COVID is being shared and it is also reachable. Furthermore, much regulation is needed for handling this pandemic since it is a threat to global society. And many more discoveries shall be made in the medical field that uses AI as a primary key source.


2010 ◽  
Vol 129-131 ◽  
pp. 556-560 ◽  
Author(s):  
Chun Li Lei ◽  
Zhi Yuan Rui

In a lot of factors, thermal deformation of motorized high-speed spindle is a key factor affecting the manufacturing accuracy of machine tool. In order to reduce the thermal errors, the reasons and influence factors are analyzed. A thermal error model, that considers the effect of thermodynamics and speed on the thermal deformation, is proposed by using genetic algorithm-based radial basis function neural network. The improved neural network has been trained and tested, then a thermal error compensation system based on this model is established to compensate thermal deformation. The experiment results show that there is a 79% decrease in motorized spindle errors and this model has high accuracy.


2009 ◽  
Vol 626-627 ◽  
pp. 135-140 ◽  
Author(s):  
Qian Jian Guo ◽  
X.N. Qi

Through analysis of the thermal errors affected NC machine tool, a new prediction model based on BP neural networks is presented, and ant colony algorithm is applied to train the weights of neural network model. Finally, thermal error compensation experiment is implemented, and the thermal error is reduced from 35μm to 6μm. The result shows that the local minimum problem of BP neural network is overcome, and the model accuracy is improved.


Author(s):  
P. Rönnholm ◽  
M. T. Vaaja ◽  
H. Kauhanen ◽  
T. Klockars

Abstract. In this paper, we illustrate how convolutional neural networks and voxel-based processing together with voxel visualizations can be utilized for the selection of unaimed images for a photogrammetric image block. Our research included the detection of an ear from images with a convolutional neural network, computation of image orientations with a structure-from-motion algorithm, visualization of camera locations in a voxel representation to detect the goodness of the imaging geometry, rejection of unnecessary images with an XYZ buffer, the creation of 3D models in two different example cases, and the comparison of resulting 3D models. Two test data sets were taken of an ear with the video recorder of a mobile phone. In the first test case, a special emphasis was taken to ensure good imaging geometry. On the contrary, in the second test case the trajectory was limited to approximately horizontal movement, leading to poor imaging geometry. A convolutional neural network together with an XYZ buffer managed to select a useful set of images for the photogrammetric 3D measuring phase. The voxel representation well illustrated the imaging geometry and has potential for early detection where data is suitable for photogrammetric modelling. The comparison of 3D models revealed that the model from poor imaging geometry was noisy and flattened. The results emphasize the importance of good imaging geometry.


Complexity ◽  
2021 ◽  
Vol 2021 ◽  
pp. 1-9 ◽  
Author(s):  
Weibin Chen ◽  
Zhiyang Gu ◽  
Zhimin Liu ◽  
Yaoyao Fu ◽  
Zhipeng Ye ◽  
...  

Thyroid nodule is a clinical disorder with a high incidence rate, with large number of cases being detected every year globally. Early analysis of a benign or malignant thyroid nodule using ultrasound imaging is of great importance in the diagnosis of thyroid cancer. Although the b-mode ultrasound can be used to find the presence of a nodule in the thyroid, there is no existing method for an accurate and automatic diagnosis of the ultrasound image. In this pursuit, the present study envisaged the development of an ultrasound diagnosis method for the accurate and efficient identification of thyroid nodules, based on transfer learning and deep convolutional neural network. Initially, the Total Variation- (TV-) based self-adaptive image restoration method was adopted to preprocess the thyroid ultrasound image and remove the boarder and marks. With data augmentation as a training set, transfer learning with the trained GoogLeNet convolutional neural network was performed to extract image features. Finally, joint training and secondary transfer learning were performed to improve the classification accuracy, based on the thyroid images from open source data sets and the thyroid images collected from local hospitals. The GoogLeNet model was established for the experiments on thyroid ultrasound image data sets. Compared with the network established with LeNet5, VGG16, GoogLeNet, and GoogLeNet (Improved), the results showed that using GoogLeNet (Improved) model enhanced the accuracy for the nodule classification. The joint training of different data sets and the secondary transfer learning further improved its accuracy. The results of experiments on the medical image data sets of various types of diseased and normal thyroids showed that the accuracy rate of classification and diagnosis of this method was 96.04%, with a significant clinical application value.


2021 ◽  
Vol 7 ◽  
pp. e497
Author(s):  
Shakeel Shafiq ◽  
Tayyaba Azim

Deep neural networks have been widely explored and utilised as a useful tool for feature extraction in computer vision and machine learning. It is often observed that the last fully connected (FC) layers of convolutional neural network possess higher discrimination power as compared to the convolutional and maxpooling layers whose goal is to preserve local and low-level information of the input image and down sample it to avoid overfitting. Inspired from the functionality of local binary pattern (LBP) operator, this paper proposes to induce discrimination into the mid layers of convolutional neural network by introducing a discriminatively boosted alternative to pooling (DBAP) layer that has shown to serve as a favourable replacement of early maxpooling layer in a convolutional neural network (CNN). A thorough research of the related works show that the proposed change in the neural architecture is novel and has not been proposed before to bring enhanced discrimination and feature visualisation power achieved from the mid layer features. The empirical results reveal that the introduction of DBAP layer in popular neural architectures such as AlexNet and LeNet produces competitive classification results in comparison to their baseline models as well as other ultra-deep models on several benchmark data sets. In addition, better visualisation of intermediate features can allow one to seek understanding and interpretation of black box behaviour of convolutional neural networks, used widely by the research community.


Sign in / Sign up

Export Citation Format

Share Document