Identification of Dynamic Coefficients of a Five-Pad Tilting Pad Journal Bearing Up to Highest Surface Speeds

Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa and different lube oil flow rates. Dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.

Author(s):  
Philipp Zemella ◽  
Thomas Hagemann ◽  
Bastian Pfau ◽  
Hubert Schwarze

Abstract Tilting-pad journal bearings are widely used in turbomachinery industry due to their positive dynamic properties at high rotor speeds. However, the exact description of this dynamic behavior is still part of current research. This paper presents measurement results for a five-pad tilting-pad journal bearing in load between pivot configuration. The bearing is characterized by a nominal diameter of 100 mm, a length of 90 mm, and a pivot offset of 0.6. Investigations include results for surface speeds between 25 and 120 m/s and specific bearing loads ranging from 0.0 to 3.0 MPa. Results of theoretical predictions are commonly derived from perturbation of stationary operation under static load. Therefore, experimental results for stationary operation including pad deflection under static load are presented first to characterize the investigated bearing. Measured results indicate considerable non-laminar flow in the upper region of the investigated range of rotor speeds. Second, dynamic excitation test are performed with excitation frequencies up to 400 Hz to evaluate dynamic coefficients of a stiffness (K) and damping (C) KC-model, and additionally, a KCM-model using additional virtual mass (M) coefficients. KCM-coefficients are obtained by fitting frequency dependent KC-characteristics to the KCM-model structure using least square approach. The wide range of rotating and excitation frequencies leads to subsynchronous as well as supersynchronous vibrations. Excitation forces are applied with multi-sinus and single-sinus characteristics. The latter one allows evaluation of KC-coefficients at the particular frequency ratio in the time domain. Here, frequency and time domain evaluation algorithms for dynamic coefficients are used in order to assess their special properties and quality. The impact of surface speed, bearing load, and oil flow rate on measured and predicted KCM-coefficients is investigated. Measured and predicted results can be well fitted to a KCM-model and show a significant influence of the ratio between fluid film and pivot support stiffness on the speed dependent characteristic of bearing stiffness coefficients. However, the impact of this ratio on damping coefficients is considerably lower. Further investigations on the impact of oil flow rates indicate that a significant decrease of direct damping coefficients exists below a certain level of starvation. Above this limit, direct damping coefficients are nearly independent of oil flow rate. Results are analyzed in detail and demands on improvements for predictions are derived.


Author(s):  
Kyung-Bo Bang ◽  
Jeong-Hun Kim ◽  
Cheol-Hong Kim

In the present paper, we suggest a new type of tilting pad journal bearing to decrease oil film temperature and eliminate pad fluttering during operation. This bearing consists of tilting pad journal bearing at low casing and fixed arc type journal bearing at upper casing. Namely we changed a tilting pad bearing with a fixed arc type bearing at upper casing. To investigate the effects of changing the bearing shape, the static and dynamic characteristics were compared experimentally with conventional tilting pad journal bearing. For the static characteristics, oil film temperature, hydrodynamic pressure and oil film thickness were measured with the variation of rotating speed, bearing load and oil flow rate. The stiffness and damping coefficients of oil film were also obtained using the response subjected to harmonic external force to evaluating the dynamic characteristics. The results show that the suggested type of bearing has effect on reducing oil film temperature and increasing stiffness and damping coefficients of oil film.


Lubricants ◽  
2021 ◽  
Vol 9 (2) ◽  
pp. 18
Author(s):  
Eckhard Schüler ◽  
Olaf Berner

In high speed, high load fluid-film bearings, the laminar-turbulent flow transition can lead to a considerable reduction of the maximum bearing temperatures, due to a homogenization of the fluid-film temperature in radial direction. Since this phenomenon only occurs significantly in large bearings or at very high sliding speeds, means to achieve the effect at lower speeds have been investigated in the past. This paper shows an experimental investigation of this effect and how it can be used for smaller bearings by optimized eddy grooves, machined into the bearing surface. The investigations were carried out on a Miba journal bearing test rig with Ø120 mm shaft diameter at speeds between 50 m/s–110 m/s and at specific bearing loads up to 4.0 MPa. To investigate the potential of this technology, additional temperature probes were installed at the crucial position directly in the sliding surface of an up-to-date tilting pad journal bearing. The results show that the achieved surface temperature reduction with the optimized eddy grooves is significant and represents a considerable enhancement of bearing load capacity. This increase in performance opens new options for the design of bearings and related turbomachinery applications.


Author(s):  
Jason C. Wilkes ◽  
Dara W. Childs

For several years, researchers have presented predictions showing that using a full tilting-pad journal bearing (TPJB) model (retaining all of the pad degrees of freedom) is necessary to accurately perform stability calculations for a shaft operating on TPJBs. This paper will discuss this issue, discuss the importance of pad and pivot flexibility in predicting impedance coefficients for the tilting-pad journal bearing, present measured changes in bearing clearance with operating temperature, and summarize the differences between measured and predicted frequency dependence of dynamic impedance coefficients. The current work presents recent test data for a 100 mm (4 in) five-pad TPJB tested in load on pad (LOP) configuration. Measured results include bearing clearance as a function of operating temperature, pad clearance and radial displacement of the loaded pad (the pad having the static load vector directed through its pivot), and frequency dependent stiffness and damping. Measured hot bearing clearances are approximately 30% smaller than measured cold bearing clearances and are inversely proportional to pad surface temperature; predicting bearing impedances with a rigid pad and pivot model using these reduced clearances results in overpredicted stiffness and damping coefficients that are several times larger than previous comparisons. The effect of employing a full bearing model versus a reduced bearing model (where only journal degrees of freedom are retained) in a stability calculation for a realistic rotor-bearing system is assessed. For the bearing tested, the bearing coefficients reduced at the frequency of the unstable eigenvalue (subsynchronously reduced) predicted a destabilizing cross-coupled stiffness coefficient at the onset of instability within 1% of the full model, while synchronously reduced coefficients for the lightly loaded bearing required 25% more destabilizing cross-coupled stiffness than the full model to cause system instability. The same stability calculation was performed using measured stiffness and damping coefficients at synchronous and subsynchronous frequencies. These predictions showed that both the synchronously measured stiffness and damping and predictions using the full bearing model were more conservative than the model using subsynchronously measured stiffness and damping, an outcome that is completely opposite from conclusions reached by comparing different prediction models. This contrasting outcome results from a predicted increase in damping with increasing excitation frequency at all speeds and loads; however, this increase in damping with increasing excitation frequency was only measured at the most heavily loaded conditions.


Author(s):  
S. H. Chan ◽  
M. F. White

Abstract Measurements have been taken on an experimental rotor-bearing test rig which consists of a full size gas turbine shaft supported by two five-pad tilting-pad journal bearings. The impact test method was applied by exciting one end of the shaft in-situ by means of a hammer blow. Impact forces and response displacements were collected and analysed with suitable corrections for runout effect. Averaged frequency response spectra thus obtained were used in a parameter estimation procedure to calculate the dynamic coefficients of the tested tilting-pad journal bearing. An analytical single degree-of-freedom model was employed and one of the input parameters in the mechanical model, the effective mass, was found to significantly influence the estimated results. The measured stiffness and damping coefficients are compared with results predicted by a bearing design program. Possible sources of discrepancies between experimental and theoretical results are discussed.


2010 ◽  
Vol 133 (1) ◽  
Author(s):  
Zhiyong Yan ◽  
Yi Lu ◽  
Tiesheng Zheng

Considering the freedom of pad tilting and pad translation along preload orientation, an analytical complete model, as well as mathematical method, which contains 2n+2 degrees of freedom, is presented for calculating the dynamical characteristics of tilting-pad journal bearing. Based on the motion relationship of shaft and pad, the local coordinate system, the generalized displacement, and the generalized force vector are chosen. The concise transformation of generalized displacement, generalized force, and its Jacobian matrix between the local and global coordinate systems are built up in matrix form. A fast algorithm using the Newton–Raphson method for calculating the equilibrium position of journal and pads is proposed. The eight reduced stiffness and damping coefficients can be obtained assuming that the journal and all pads are subject to harmonic vibration. Numerical results show that the reduced damping coefficients and the threshold speed can be effectively enhanced by giving suitable pad pivot stiffness and damping simultaneously, and this analytical method can be applied to analyze dynamical behavior of the tilting-pad journal bearing rotor system.


Author(s):  
Aoshuang Ding ◽  
Xuesong Li

Abstract This paper analyses the flow characteristics and oil-air distributions of oil flows in a tilting-pad journal bearing under different bearing loads. This titling-pad journal bearing is working at 3000 rpm rotation speed and its minimum film thicknesses have been measured under different loads from 180 kN to 299 kN. Based on the previous researches of this bearing under 180 kN, the gaseous cavitation and low-turbulence flow exists in this bearing flow. A suitable gaseous cavitation model and the SST model with low-Re correction are used in the film flow simulations. With the rotor and pads assumed to be rigid, the dynamic mesh and motion equations are applied to simulate the motions of the rotor and the rotations of the pads. Based on the simulation results under different bearing loads, the simulated minimum film thicknesses agrees well with the measured data. It indicates that the simulation results can catch the film geometries and flows correctly. With the load increasing, the rotor moves closer to the loaded pads and the minimum film thickness decreases. Taking the effect of boundary layers into consideration, the turbulence has a negative relationship with the film thickness and decreases in the loaded area under higher bearing load. It can be verified by the simulated lower turbulent viscosity ratio distributions in the loaded pads. In the unloaded area, both the film thickness and turbulence viscosity ratio are positively related to the bearing loads. Thus, the higher bearing load may lead the flow to be more different in the loaded and unloaded area, and the turbulence in the loaded pads may transfer to laminar in the end. As for the oil-air distributions, in the unloaded pads, with the bearing load increasing, the simulated air volume fraction increases in the unloaded pads with lower pressure. It should be caused by the higher film thickness of the unloaded pads under higher loads. In sum, the flow turbulence and cavitation process changes with the bearing load. With a higher load, the cavitation becomes more in the unloaded pads and the flow changes sharper from the high-turbulence unloaded area to the low-turbulence loaded area. As the simulation results is in good accordance with the experimental data, the SST model with low-Re correction and the gaseous cavitation model are verified to be suitable for bearing film simulations under different loads.


2019 ◽  
Vol 141 (6) ◽  
Author(s):  
Jongin Yang ◽  
Alan Palazzolo

Part II presents a novel approach for predicting dynamic coefficients for a tilting pad journal bearing (TPJB) using computational fluid dynamics (CFD) and finite element method (FEM), including fully coupled elastic deflection, heat transfer, and fluid dynamics. Part I presented a similarly novel, high fidelity approach for TPJB static response prediction which is a prerequisite for the dynamic characteristic determination. The static response establishes the equilibrium operating point values for eccentricity, attitude angle, deflections, temperatures, pressures, etc. The stiffness and damping coefficients are obtained by perturbing the pad and journal motions about this operating point to determine changes in forces and moments. The stiffness and damping coefficients are presented in “synchronously reduced form” as required by American Petroleum Institute (API) vibration standards. Similar to Part I, an advanced three-dimensional thermal—Reynolds equation code validates the CFD code for the special case when flow Between Pad (BP) regions is ignored, and the CFD and Reynolds pad boundary conditions are made identical. The results show excellent agreement for this validation case. Similar to the static response case, the dynamic characteristics from the Reynolds model show large discrepancies compared with the CFD results, depending on the Reynolds mixing coefficient (MC). The discrepancies are a concern given the key role that stiffness and damping coefficients serve instability and response predictions in rotordynamics software. The uncertainty of the MC and its significant influence on static and dynamic response predictions emphasizes a need to utilize the CFD approach for TPJB simulation in critical machines.


Sign in / Sign up

Export Citation Format

Share Document