Adaptive Kriging Method for Uncertainty Quantification of the Photoelectron Sheath and Dust Levitation on the Lunar Surface

Author(s):  
Xinpeng Wei ◽  
Jianxun Zhao ◽  
Xiaoming He ◽  
Zhen Hu ◽  
Xiaoping Du ◽  
...  

Abstract This paper presents an adaptive Kriging based method to perform uncertainty quantification (UQ) of the photoelectron sheath and dust levitation on the lunar surface. The objective of this study is to identify the upper and lower bounds of the electric potential and that of dust levitation height, given the intervals of model parameters in the one-dimensional (1D) photoelectron sheath model. To improve the calculation efficiency, we employ the widely used adaptive Kriging method (AKM). A task-oriented learning function and a stopping criterion are developed to train the Kriging model and customize the AKM. Experiment analysis shows that the proposed AKM is both accurate and efficient.

2007 ◽  
Vol 345-346 ◽  
pp. 901-904
Author(s):  
Seung Hwan Oh ◽  
Jung Ho Kang ◽  
Won Sik Joo ◽  
Xue Guan Song ◽  
Hyeung Geol Kong ◽  
...  

The optimization of gate valve was performed using Kriging based approximation model. The DACE modeling, known as the one of Kriging interpolation, is introduced to obtain the surrogate approximation model of the function. In addition, we describe the definition, the prediction function and the algorithm of Kriging method and examine the accuracy of Kriging by using validation method.


Author(s):  
Sebastian Brandstaeter ◽  
Sebastian L. Fuchs ◽  
Jonas Biehler ◽  
Roland C. Aydin ◽  
Wolfgang A. Wall ◽  
...  

AbstractGrowth and remodeling in arterial tissue have attracted considerable attention over the last decade. Mathematical models have been proposed, and computational studies with these have helped to understand the role of the different model parameters. So far it remains, however, poorly understood how much of the model output variability can be attributed to the individual input parameters and their interactions. To clarify this, we propose herein a global sensitivity analysis, based on Sobol indices, for a homogenized constrained mixture model of aortic growth and remodeling. In two representative examples, we found that 54–80% of the long term output variability resulted from only three model parameters. In our study, the two most influential parameters were the one characterizing the ability of the tissue to increase collagen production under increased stress and the one characterizing the collagen half-life time. The third most influential parameter was the one characterizing the strain-stiffening of collagen under large deformation. Our results suggest that in future computational studies it may - at least in scenarios similar to the ones studied herein - suffice to use population average values for the other parameters. Moreover, our results suggest that developing methods to measure the said three most influential parameters may be an important step towards reliable patient-specific predictions of the enlargement of abdominal aortic aneurysms in clinical practice.


2018 ◽  
Vol 612 ◽  
pp. L1 ◽  
Author(s):  
E. Fossat ◽  
F. X. Schmider

Context. The detection of asymptotic solar g-mode parameters was the main goal of the GOLF instrument onboard the SOHO space observatory. This detection has recently been reported and has identified a rapid mean rotation of the solar core, with a one-week period, nearly four times faster than all the rest of the solar body, from the surface to the bottom of the radiative zone. Aim. We present here the detection of more g modes of higher degree, and a more precise estimation of all their parameters, which will have to be exploited as additional constraints in modeling the solar core. Methods. Having identified the period equidistance and the splitting of a large number of asymptotic g modes of degrees 1 and 2, we test a model of frequencies of these modes by a cross-correlation with the power spectrum from which they have been detected. It shows a high correlation peak at lag zero, showing that the model is hidden but present in the real spectrum. The model parameters can then be adjusted to optimize the position (at exactly zero lag) and the height of this correlation peak. The same method is then extended to the search for modes of degrees 3 and 4, which were not detected in the previous analysis.Results. g-mode parameters are optimally measured in similar-frequency bandwidths, ranging from 7 to 8 μHz at one end and all close to 30 μHz at the other end, for the degrees 1 to 4. They include the four asymptotic period equidistances, the slight departure from equidistance of the detected periods for l = 1 and l = 2, the measured amplitudes, functions of the degree and the tesseral order, and the splittings that will possibly constrain the estimated sharpness of the transition between the one-week mean rotation of the core and the almost four-week rotation of the radiative envelope. The g-mode periods themselves are crucial inputs in the solar core structure helioseismic investigation.


2017 ◽  
Vol 28 (4) ◽  
pp. e2439 ◽  
Author(s):  
Shuai Fu ◽  
Mathieu Couplet ◽  
Nicolas Bousquet

Author(s):  
Georg A. Mensah ◽  
Luca Magri ◽  
Jonas P. Moeck

Thermoacoustic instabilities are a major threat for modern gas turbines. Frequency-domain based stability methods, such as network models and Helmholtz solvers, are common design tools because they are fast compared to compressible CFD computations. Frequency-domain approaches result in an eigenvalue problem, which is nonlinear with respect to the eigenvalue. Nonlinear functions of the frequency are, for example, the n–τ model, impedance boundary conditions, etc. Thus, the influence of the relevant parameters on mode stability is only given implicitly. Small changes in some model parameters, which are obtained by experiments with some uncertainty, may have a great impact on stability. The assessment of how parameter uncertainties propagate to system stability is therefore crucial for safe gas turbine operation. This question is addressed by uncertainty quantification. A common strategy for uncertainty quantification in thermoacoustics is risk factor analysis. It quantifies the uncertainty of a set of parameters in terms of the probability of a mode to become unstable. One general challenge regarding uncertainty quantification is the sheer number of uncertain parameter combinations to be quantified. For instance, uncertain parameters in an annular combustor might be the equivalence ratio, convection times, geometrical parameters, boundary impedances, flame response model parameters etc. Assessing also the influence of all possible combinations of these parameters on the risk factor is a numerically very costly task. A new and fast way to obtain algebraic parameter models in order to tackle the implicit nature of the eigenfrequency problem is using adjoint perturbation theory. Though adjoint perturbation methods were recently applied to accelerate the risk factor analysis, its potential to improve the theory has not yet been fully exploited. This paper aims to further utilize adjoint methods for the quantification of uncertainties. This analytical method avoids the usual random Monte Carlo simulations, making it particularly attractive for industrial purposes. Using network models and the open-source Helmholtz solver PyHoltz it is also discussed how to apply the method with standard modeling techniques. The theory is exemplified based on a simple ducted flame and a combustor of EM2C laboratory for which experimental validation is available.


Author(s):  
Changcong Zhou ◽  
Mengyao Ji ◽  
Yishang Zhang ◽  
Fuchao Liu ◽  
Haodong Zhao

For a certain type of aircraft landing gear retraction-extension mechanism, a multi-body dynamic simulation model is established, and the time-dependent curves of force and angle are obtained. Considering the random uncertainty of friction coefficient, assembly error, and the change of hinge wear under different retraction times, the reliability model is built including three failure modes of landing gear, i.e. blocking failure, positioning failure and accuracy failure. Based on the adaptive Kriging model, the reliability and sensitivity of retraction-extension system under the condition of single failure mode and multiple failure modes in series are analyzed, and the rule of reliability and sensitivity changing with the number of operations is given. The results show that the system failure probability of landing gear mechanism tends to decrease first and then increase when considering the given information of random factors, and the influences of random factors on the failure probability vary with the number of operations. This work provides a viable tool for the reliability analysis and design of landing gear mechanisms.


2015 ◽  
Vol 57 (6) ◽  
Author(s):  
Maura Murru ◽  
Jiancang Zhuang ◽  
Rodolfo Console ◽  
Giuseppe Falcone

<div class="page" title="Page 1"><div class="layoutArea"><div class="column"><p>In this paper, we compare the forecasting performance of several statistical models, which are used to describe the occurrence process of earthquakes in forecasting the short-term earthquake probabilities during the L’Aquila earthquake sequence in central Italy in 2009. These models include the Proximity to Past Earthquakes (PPE) model and two versions of the Epidemic Type Aftershock Sequence (ETAS) model. We used the information gains corresponding to the Poisson and binomial scores to evaluate the performance of these models. It is shown that both ETAS models work better than the PPE model. However, in comparing the two types of ETAS models, the one with the same fixed exponent coefficient (<span>alpha)</span> = 2.3 for both the productivity function and the scaling factor in the spatial response function (ETAS I), performs better in forecasting the active aftershock sequence than the model with different exponent coefficients (ETAS II), when the Poisson score is adopted. ETAS II performs better when a lower magnitude threshold of 2.0 and the binomial score are used. The reason is found to be that the catalog does not have an event of similar magnitude to the L’Aquila mainshock (M<sub>w</sub> 6.3) in the training period (April 16, 2005 to March 15, 2009), and the (<span>alpha)</span>-value is underestimated, thus the forecast seismicity is underestimated when the productivity function is extrapolated to high magnitudes. We also investigate the effect of the inclusion of small events in forecasting larger events. These results suggest that the training catalog used for estimating the model parameters should include earthquakes of magnitudes similar to the mainshock when forecasting seismicity during an aftershock sequence.</p></div></div></div>


Sign in / Sign up

Export Citation Format

Share Document