A New Extensible Continuum Manipulator Using Flexible Parallel Mechanism and Rigid Motion Transmission

2021 ◽  
pp. 1-23
Author(s):  
Yujiong Liu ◽  
Pinhas Ben-Tzvi

Abstract An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or pipe inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and a larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension, etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator can achieve tail-like spatial bending and worm-like extension at the same time. Simplified kinematic analyses are conducted to estimate the workspace and the motion non-uniformity. A proof-of-concept prototype was integrated to verify the mechanism’s mobility and to evaluate the kinematic model accuracy. The results show that the proposed mechanism achieved the desired mobilities with a maximum extension ratio of 32.2% and a maximum bending angle of 80 degrees.

Author(s):  
Yujiong Liu ◽  
Pinhas Ben-Tzvi

Abstract An extensible continuum manipulator (ECM) has specific advantages over its non-extensible counterparts. For instance, in certain applications, such as minimally invasive surgery or tube inspection, the base motion might be limited or disallowed. The additional extensibility provides the robot with more dexterous manipulation and larger workspace. Existing continuum robot designs achieve extensibility mainly through artificial muscle/pneumatic, extensible backbone, concentric tube, and base extension etc. This paper proposes a new way to achieve this additional motion degree of freedom by taking advantage of the rigid coupling hybrid mechanism concept and a flexible parallel mechanism. More specifically, a rack and pinion set is used to transmit the motion of the i-th subsegment to drive the (i+1)-th subsegment. A six-chain flexible parallel mechanism is used to generate the desired spatial bending and one extension mobility for each subsegment. This way, the new manipulator is able to achieve tail-like spatial bending and worm-like extension at the same time. A proof-of-concept prototype was integrated to verify the mobility of the new mechanism. Corresponding kinematic analyses are conducted to estimate the workspace and the motion non-uniformity.


Author(s):  
Shiwei Liu ◽  
Yu Sun ◽  
Gaoliang Peng ◽  
Yuan Xue ◽  
Anna Hnydiuk-Stefan ◽  
...  

In this paper, a novel 6-degrees-of-freedom (DOF) hybrid mechanism is proposed to realize position and posture adjusting for large-volume equipment. The designed hybrid manipulator is composed of the lower and upper modules, namely, a 3-DOF redundant spatial parallel mechanism (SPM) and a 3-DOF planar parallel mechanism (PPM), which has three rotational and three translational DOFs. According to the step-by-step pose adjusting strategy, the kinematics analyses of the lower and upper modules have been carried out systematically. For the whole hybrid mechanism, a complete kinematic model has been established; and visualized workspace of the kinematic model with regular shape and large volume demonstrates profound application prospects in engineering. In order to evaluate the performance of the proposed mechanism, experimental tests have been conducted in an automated docking system for pose adjustment of large and heavy components. The analysis results demonstrate the effectiveness and practicability of the new mechanism.


Mathematics ◽  
2021 ◽  
Vol 9 (13) ◽  
pp. 1468
Author(s):  
Luis Nagua ◽  
Carlos Relaño ◽  
Concepción A. Monje ◽  
Carlos Balaguer

A soft joint has been designed and modeled to perform as a robotic joint with 2 Degrees of Freedom (DOF) (inclination and orientation). The joint actuation is based on a Cable-Driven Parallel Mechanism (CDPM). To study its performance in more detail, a test platform has been developed using components that can be manufactured in a 3D printer using a flexible polymer. The mathematical model of the kinematics of the soft joint is developed, which includes a blocking mechanism and the morphology workspace. The model is validated using Finite Element Analysis (FEA) (CAD software). Experimental tests are performed to validate the inverse kinematic model and to show the potential use of the prototype in robotic platforms such as manipulators and humanoid robots.


Author(s):  
Alessandro Cammarata ◽  
Rosario Sinatra

This paper presents kinematic and dynamic analyses of a two-degree-of-freedom pointing parallel mechanism. The mechanism consists of a moving platform, connected to a fixed platform by two legs of type PUS (prismatic-universal-spherical). At first a simplified kinematic model of the pointing mechanism is introduced. Based on this proposed model, the dynamics equations of the system using the Natural Orthogonal Complement method are developed. Numerical examples of the inverse dynamics results are presented by numerical simulation.


2014 ◽  
Vol 635-637 ◽  
pp. 1290-1293
Author(s):  
Shou Li Zhang ◽  
Jing Fang Liu ◽  
Yue Qing Yu

The structural synthesis is the primary and the most important issue in the process of mechanism creative design. In the paper, Firstly, select a 1T symmetric parallel mechanism, and the constraint and mobility of the branches can be analyzed. With the method of linear combination of the screws, the new branches are constructed. Then, using the measure of separation and merger, parts of the limbs of the parallel mechanism can be replaced by equivalent coupled structures, so corresponding symmetric coupling mechanisms with equal mobility are synthesized. Finally, solving the constraint screws of the branch of the coupling mechanism, in order to prove the hybrid mechanism is full-cycle or not.


2021 ◽  
Vol ahead-of-print (ahead-of-print) ◽  
Author(s):  
GuoHua Gao ◽  
Pengyu Wang ◽  
Hao Wang

Purpose The purpose of this paper is to present a follow-the-leader motion strategy for multi-section continuum robots, which aims to make the robot have the motion ability in a confined environment and avoid a collision. Design/methodology/approach First, the mechanical design of a multi-section continuum robot is introduced and the forward kinematic model is built. After that, the follow-the-leader motion strategy is proposed and the differential evolution (DE) algorithm for calculating optimal posture parameters is presented. Then simulations and experiments are carried out on a series of predefined paths to analyze the performance of the follow-the-leader motion. Findings The follow-the-leader motion can be well performed on the continuum robots this study proposes in this research. The experimental results show that the deviation from the path is less than 9.7% and the tip error is no more than 15.6%. Research limitations/implications Currently, the follow-the-leader motion is affected by the following factors such as gravity and continuum robot design. Furthermore, the position error is not compensated under open-loop control. In future work, this paper will improve the accuracy of the robot and introduce a closed-loop control strategy to improve the motion accuracy. Originality/value The main contribution of this paper is to present an algorithm to generate follow-the-leader motion of the continuum robot based on DE. This method is suitable for solving new arrangements in the process of following a nonlinear path. Then, it is expected to promote the engineering application of the continuum robot.


Mechatronics ◽  
2019 ◽  
Vol 60 ◽  
pp. 56-65 ◽  
Author(s):  
Yan Peng ◽  
Yonggan Liu ◽  
Yang Yang ◽  
Na Liu ◽  
Yi Sun ◽  
...  

2020 ◽  
Vol 17 (01) ◽  
pp. 1950029
Author(s):  
Christopher Hazard ◽  
Nancy Pollard ◽  
Stelian Coros

Grasp planning and motion synthesis for dexterous manipulation tasks are traditionally done given a pre-existing kinematic model for the robotic hand. In this paper, we introduce a framework for automatically designing hand topologies best suited for manipulation tasks given high-level objectives as input. Our pipeline is capable of building custom hand designs around specific manipulation tasks based on high-level user input. Our framework comprises of a sequence of trajectory optimizations chained together to translate a sequence of objective poses into an optimized hand mechanism along with a physically feasible motion plan involving both the constructed hand and the object. We demonstrate the feasibility of this approach by synthesizing a series of hand designs optimized to perform specified in-hand manipulation tasks of varying difficulty. We extend our original pipeline 32 to accommodate the construction of hands suitable for multiple distinct manipulation tasks as well as provide an in depth discussion of the effects of each non-trivial optimization term.


2020 ◽  
Vol 2020 ◽  
pp. 1-13
Author(s):  
Zaixiang Pang ◽  
Tongyu Wang ◽  
Junzhi Yu ◽  
Shuai Liu ◽  
Xiyu Zhang ◽  
...  

This paper proposes a bionic flexible wrist parallel mechanism to simulate human wrist joints, which is characterized by a rope-driven, compression spring-supported hybrid mechanism. Specifically, to realize the movement of the wrist mechanism, a parallel structure is adopted to support the mobile platform and is controlled by a cable, which plays the role of wrist muscles. Because the compression spring is elastic, it is difficult to directly solve inverse kinematics. To address this problem, the external force acting on the moving platform is firstly equivalent to the vector force and torque at the center of the moving platform. Then, based on inverse kinematic and static analyses, the inverse motion of the robot model can be solved according to the force and torque balance conditions and the lateral spring bending equation of the compression spring. In order to verify the proposed method, kinematics, statics, and parallel mechanism workspace are further analyzed by the software MATLAB. The obtained results demonstrate the effectiveness and feasibility of the designed parallel mechanism. This work offers new insights into the parallel mechanism with flexible joints in replicating the movements of the human wrist, thus promoting the development of rehabilitation robots and rope-driven technology to some extent.


Author(s):  
Zhen Huang ◽  
Si J. Zhu

This paper presents the kinematic analyses of a 5-DOF 3-RCRR parallel mechanism. The end-effector of this mechanism can rotate round rotation center and one reference point on it can translate in a plane parallels to the base platform. Since the traditional Kutzbach-Gru¨bler formula is not valid for this mechanism, the modified Kutzbach-Gru¨bler formula and screw theory are used in the mobility analysis. The Duffy’s spherical analytic theory is used in forward/reverse position analyses. In forward/reverse velocity/acceleration analyses, virtual mechanism principle is used to build a virtual parallel mechanism (3-PvRCRR), which is equivalent to the initial mechanism (3-RCRR) on kinematics if all rates of virtual pairs (Pv) are set to be zero. At the end, some kinematics curves are presented with a numerical example.


Sign in / Sign up

Export Citation Format

Share Document