Down-Hole Directional Drilling Dynamics Modeling Based on a Hybrid Modeling Method With Model Order Reduction

2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Chong Ke ◽  
Xingyong Song

Abstract This paper presents a dynamics model for the down-hole directional drilling system based on a hybrid modeling method with model order reduction. Due to the long dimension of the drill string, a drilling model purely based on numerical methods such as the finite element method (FEM) may require a large number of meshes, which induces high computational intensity. By using a hybrid method combining FEM and the transfer matrix method (TMM), the order of the model can be significantly reduced. To further reduce the modeling order, a proper orthogonal decomposition (POD)-Galerkin projection-based approach is applied, and a set of linear normal modes (LNMs) are identified to create a reduced-order projection subspace. To this end, simulation results are presented to prove that the method can effectively capture the dominant modes of the drilling dynamics, and a computationally efficient and high fidelity reduced-order hybrid model can be reached for real-time state estimation and control design.

2019 ◽  
Vol 37 (3) ◽  
pp. 953-986
Author(s):  
Salim Ibrir

Abstract Efficient numerical procedures are developed for model-order reduction of a class of discrete-time nonlinear systems. Based on the solution of a set of linear-matrix inequalities, the Petrov–Galerkin projection concept is utilized to set up the structure of the reduced-order nonlinear model that preserves the input-to-state stability while ensuring an acceptable approximation error. The first numerical algorithm is based on the construction of a constant optimal projection matrix and a constant Lyapunov matrix to form the reduced-order dynamics. The second proposed algorithm aims to incorporate the output of the original system to correct the instantaneous value of the truncation matrix and maintain an acceptable approximation error even with low-order systems. An extension to uncertain systems is provided. The usefulness and the efficacy of the developed procedures are approved by the consideration of two numerical examples treating a nonlinear low-order system and a high-dimensional system, issued from the discretization of the damped heat-transfer partial-differential equation.


2015 ◽  
Vol 2015 ◽  
pp. 1-9 ◽  
Author(s):  
Othman M. K. Alsmadi ◽  
Zaer S. Abo-Hammour

A robust computational technique for model order reduction (MOR) of multi-time-scale discrete systems (single input single output (SISO) and multi-input multioutput (MIMO)) is presented in this paper. This work is motivated by the singular perturbation of multi-time-scale systems where some specific dynamics may not have significant influence on the overall system behavior. The new approach is proposed using genetic algorithms (GA) with the advantage of obtaining a reduced order model, maintaining the exact dominant dynamics in the reduced order, and minimizing the steady state error. The reduction process is performed by obtaining an upper triangular transformed matrix of the system state matrix defined in state space representation along with the elements ofB,C, andDmatrices. The GA computational procedure is based on maximizing the fitness function corresponding to the response deviation between the full and reduced order models. The proposed computational intelligence MOR method is compared to recently published work on MOR techniques where simulation results show the potential and advantages of the new approach.


2014 ◽  
Vol 2014 ◽  
pp. 1-5 ◽  
Author(s):  
Avadh Pati ◽  
Awadhesh Kumar ◽  
Dinesh Chandra

A Padé approximation based technique for designing a suboptimal controller is presented. The technique uses matching of both time moments and Markov parameters for model order reduction. In this method, the suboptimal controller is first derived for reduced order model and then implemented for higher order plant by partial feedback of measurable states.


2021 ◽  
Author(s):  
Nikolaos Tsokanas ◽  
Thomas Simpson ◽  
Roland Pastorino ◽  
Eleni Chatzi ◽  
Bozidar Stojadinovic

Hybrid simulation is a method used to investigate the dynamic response of a system subjected to a realistic loading scenario by combining numerical and physical substructures. To ensure high fidelity of the simulation results, it is often necessary to conduct hybrid simulation in real-time. One of the challenges arising in real-time hybrid simulation originates from high-dimensional nonlinear numerical substructures and, in particular, from the computational cost linked to the computation of their dynamic responses with sufficient accuracy. It is often the case that the simulation time-step must be decreased to capture the dynamic behavior of numerical substructures, thus resulting in longer computation. When such computation takes longer than the actual simulation time, time delays are introduced and the simulation timescale becomes distorted. In such a case, the only viable solution for doing hybrid simulation in real-time is to reduce the order of such complex numerical substructures.In this study, a model order reduction framework is proposed for real-time hybrid simulation, based on polynomial chaos expansion and feedforward neural networks. A parametric case study encompassing a virtual hybrid model is used to validate the framework. Selected numerical substructures are substituted with their respective reduced-order models. To determine the robustness of the framework, parameter sets are defined to cover the design space of interest. A comparison between the full- and reduced-order hybrid model response is delivered. The attained results demonstrate the performance of the proposed framework.


Author(s):  
David Binion ◽  
Xiaolin Chen

Modeling and simulation of Micro Electro Mechanical Systems has become increasingly important as the complexity of MEMS devices increases. In particular, thermal effects on MEMS devices has become a growing topic of interest. Through the FEA, detailed solutions can be obtained to investigate the multiphysics coupling and the transient behavior of a MEMS device at the component level. For system-level integration and simulation, the FEA discretization often results in large full-scale models, which can be computationally demanding or even prohibitive to solve. Model order reduction (MOR) was investigated in this study to reduce problem size for complex dynamic system modeling. The Arnoldi method was implemented for MOR to improve the computational efficiency while preserving the input-output behavior of coupled MEMS simulation. Using this method, a low dimensional Krylov subspace was extracted from the full-scale system model. Reduced order solution of the transient temperature distributions was then determined by projecting the system onto the extracted Krylov subspace and solving the reduced system. An electro thermal MEMS actuator was studied for various inputs. To compare results, the full-scale analyses were performed using the commercial FEA program ANSYS. It was found that the computational time of MOR was only a fraction of the full-scale solution time, with the relative errors ranging from 1.1% to 4.5% at different positions on the actuator. Our results show that the reduced order modeling via Alnoldi can significantly decrease the transient analysis solution time without much loss in accuracy for coupled-field MEMS simulation.


Machines ◽  
2019 ◽  
Vol 7 (3) ◽  
pp. 48 ◽  
Author(s):  
Azhar ◽  
Zulfiqar ◽  
Liaquat ◽  
Kumar

In model order reduction and system theory, the cross-gramian is widely applicable. The cross-gramian based model order reduction techniques have the advantage over conventional balanced truncation that it is computationally less complex, while providing a unique relationship with the Hankel singular values of the original system at the same time. This basic property of cross-gramian holds true for all symmetric systems. However, for non-square and non-symmetric dynamical systems, the standard cross-gramian does not satisfy this property. Hence, alternate approaches need to be developed for its evaluation. In this paper, a generalized frequency-weighted cross-gramian-based controller reduction algorithm is presented, which is applicable to both symmetric and non-symmetric systems. The proposed algorithm is also applicable to unstable systems even if they have poles of opposite polarities and equal magnitudes. The proposed technique produces an accurate approximation of the reduced order model in the desired frequency region with a reduced computational effort. A lower order controller can be designed using the proposed technique, which ensures closed-loop stability and performance with the original full order plant. Numerical examples provide evidence of the efficacy of the proposed technique.


Electronics ◽  
2020 ◽  
Vol 9 (6) ◽  
pp. 964
Author(s):  
Namra Akram ◽  
Mehboob Alam ◽  
Rashida Hussain ◽  
Asghar Ali ◽  
Shah Muhammad ◽  
...  

Modeling and design of on-chip interconnect, the interconnection between the components is becoming the fundamental roadblock in achieving high-speed integrated circuits. The scaling of interconnect in nanometer regime had shifted the paradime from device-dominated to interconnect-dominated design methodology. Driven by the expanding complexity of on-chip interconnects, a passivity preserving model order reduction (MOR) is essential for designing and estimating the performance for reliable operation of the integrated circuit. In this work, we developed a new frequency selective reduce norm spectral zero (RNSZ) projection method, which dynamically selects interpolation points using spectral zeros of the system. The proposed reduce-norm scheme can guarantee stability and passivity, while creating the reduced models, which are fairly accurate across selected narrow range of frequencies. The reduced order results indicate preservation of passivity and greater accuracy than the other model order reduction methods.


2018 ◽  
Vol 41 (8) ◽  
pp. 2310-2318 ◽  
Author(s):  
Shafiq Haider ◽  
Abdul Ghafoor ◽  
Muhammad Imran ◽  
Fahad Mumtaz Malik

A new scheme for model order reduction of large-scale second-order systems in time-limited intervals is presented. Time-limited Gramians that are solutions of continuous-time algebraic Lyapunov equations for second-order form systems are introduced. Time-limited second-order balanced truncation procedures with provision of balancing position and velocity Gramians are formulated. Stability conditions for reduced-order models are stated and algorithms that preserve stability in reduced-order models are discussed. Numerical examples are presented to validate the superiority of the proposed scheme compared with the infinite-time Gramians technique for time-limited applications.


Sign in / Sign up

Export Citation Format

Share Document