Down-hole Directional Drilling Dynamics Modeling Based on a Hybrid Modeling Method with Model Order Reduction

Author(s):  
Chong Ke ◽  
Dongzuo Tian ◽  
Xingyong Song
2021 ◽  
Vol 143 (10) ◽  
Author(s):  
Chong Ke ◽  
Xingyong Song

Abstract This paper presents a dynamics model for the down-hole directional drilling system based on a hybrid modeling method with model order reduction. Due to the long dimension of the drill string, a drilling model purely based on numerical methods such as the finite element method (FEM) may require a large number of meshes, which induces high computational intensity. By using a hybrid method combining FEM and the transfer matrix method (TMM), the order of the model can be significantly reduced. To further reduce the modeling order, a proper orthogonal decomposition (POD)-Galerkin projection-based approach is applied, and a set of linear normal modes (LNMs) are identified to create a reduced-order projection subspace. To this end, simulation results are presented to prove that the method can effectively capture the dominant modes of the drilling dynamics, and a computationally efficient and high fidelity reduced-order hybrid model can be reached for real-time state estimation and control design.


Author(s):  
Vladimir Lantsov ◽  
A. Papulina

The new algorithm of solving harmonic balance equations which used in electronic CAD systems is presented. The new algorithm is based on implementation to harmonic balance equations the ideas of model order reduction methods. This algorithm allows significantly reduce the size of memory for storing of model equations and reduce of computational costs.


Sign in / Sign up

Export Citation Format

Share Document