A Mobile Bennett Network Constructed with Identical Square Panels

2021 ◽  
pp. 1-23
Author(s):  
Fufu Yang ◽  
Yuan Gao ◽  
Shuailong Lu ◽  
Kunjing Chen

Abstract Mobile networks, constructed with simple linkages by tessellation, have great application potential in engineering as they could change their shapes according to the need of working state by one degree of freedom (DOF). However, the existing one-DOF networks are always composed of bar-like links, and cooperated membranes should be designed and fabricated additionally, which makes the design and the realization more complicated. This paper is to construct a one-DOF network of Bennett linkages with identical square panels. Geometric conditions to construct the network are derived by investigating the kinematic compatibility, kinematics is carried out to show the relationships among all Bennett linkages, and the discussion on the design parameter shows the extensibility and the deploying performance, which is validated by two physical prototypes. This work initials the construction of mobile networks with identical polygon-like links, which will simplify the fabrication and realization of deployable structures.

1996 ◽  
Vol 11 (4) ◽  
pp. 363-370 ◽  
Author(s):  
Z. You

A pantographic structure, capable of forming a conic shape while deployed, is presented in this paper. It can be used as the backbone of a foldable tent or other mobile shelters. Different from most of the existing deployable structures, its deployment process induces no strain in the structural components. The geometric conditions given, together with a design for the joints, guarantee that the structure has only one internal degree of freedom. The concept has been successfully demonstrated by a small scale model. The same approach could be adopted while attempting to design other domed three-dimensional foldable pantographs.


2013 ◽  
Vol 325-326 ◽  
pp. 1014-1018
Author(s):  
Hai Rong Fang ◽  
Zhi Hong Chen ◽  
Yue Fa Fang

In this paper, a novel 3-degree-of-freedom (DOF) parallel manipulator that can perform three rotations around the remote centre is presented. The theory of screws and reciprocal screws is employed for the analysis of the geometric conditions. In particular, using circular guide to instead of R joints, so that has the advantage of enabling continuous 360° revolute around Z-axis. The inverse kinematics of mechanism is given and the workspace has a good performance. To compare with the machine constructed with traditional joints, it has the advantage of high rigidity and precision.


Author(s):  
Xiaozhi Qi ◽  
Bing Li ◽  
Zhihuai Miao ◽  
Hailin Huang

In this paper, a class of large deployable mechanisms constructed by plane-symmetric Bricard linkage is presented. The plane-symmetric Bricard linkage is a closed-loop over-constrained spatial mechanism composed of six hinge-jointed bars, which has one plane of symmetry during its deployment process. The kinematic analysis of the linkage is presented from the perspectives of geometric conditions, closure equations and degree of freedom. The results illustrates that the linkage has one degree of freedom, and it can be deployed from the folded configuration to one rectangle plane. Therefore, the plane-symmetric Bricard linkage can be used to construct lager deployable mechanism as basic deployable unit. Four plane-symmetric Bricard linkages can be assembled to a quadrangular module by sharing the vertical bars of adjacent units. The module is a multi-loop deployable mechanism and has one degree of freedom by the mobility analysis. Large deployable mast, deployable plane truss and deployable ring are built by a plurality of plane-symmetric Bricard linkages. The computer-aided design models for typical examples are built to illustrate their feasibility and validate the analysis and design methods.


Author(s):  
Yan Chen ◽  
Huijuan Feng ◽  
Jiayao Ma ◽  
Rui Peng ◽  
Zhong You

The traditional waterbomb origami, produced from a pattern consisting of a series of vertices where six creases meet, is one of the most widely used origami patterns. From a rigid origami viewpoint, it generally has multiple degrees of freedom, but when the pattern is folded symmetrically, the mobility reduces to one. This paper presents a thorough kinematic investigation on symmetric folding of the waterbomb pattern. It has been found that the pattern can have two folding paths under certain circumstance. Moreover, the pattern can be used to fold thick panels. Not only do the additional constraints imposed to fold the thick panels lead to single degree of freedom folding, but the folding process is also kinematically equivalent to the origami of zero-thickness sheets. The findings pave the way for the pattern being readily used to fold deployable structures ranging from flat roofs to large solar panels.


2016 ◽  
Vol 139 (2) ◽  
Author(s):  
Xiaozhi Qi ◽  
Hailin Huang ◽  
Zhihuai Miao ◽  
Bing Li ◽  
Zongquan Deng

In this paper, a class of large deployable mechanisms constructed by plane-symmetric Bricard linkages is presented. The plane-symmetric Bricard linkage is a closed-loop overconstrained spatial mechanism composed of six hinge-jointed bars, which has one plane of symmetry during its deployment process. The kinematic analysis of the linkage is presented from the perspectives of geometric conditions, closure equations, and degree-of-freedom. The results illustrate that the linkage has one degree-of-freedom and can be deployed from the folded configuration to one rectangle plane. Therefore, the plane-symmetric Bricard linkage can be used as a basic deployable unit to construct larger deployable mechanisms. Four plane-symmetric Bricard linkages can be assembled into a quadrangular module by sharing the vertical bars of the adjacent units. The module is a multiloop deployable mechanism and has one degree-of-freedom. The singularity analysis of the module is developed, and two methods to avoid singularity are presented. A large deployable mast, deployable plane truss, and deployable ring are built with several plane-symmetric Bricard linkages. The deployment properties of the large deployable mechanisms are analyzed, and computer-aided design models for typical examples are built to illustrate their feasibility and validate the analysis and design methods.


2019 ◽  
Vol 116 (34) ◽  
pp. 16692-16696 ◽  
Author(s):  
Emmanuel Siéfert ◽  
Etienne Reyssat ◽  
José Bico ◽  
Benoît Roman

Inflatable structures offer a path for light deployable structures in medicine, architecture, and aerospace. In this study, we address the challenge of programming the shape of thin sheets of high-stretching modulus cut and sealed along their edges. Internal pressure induces the inflation of the structure into a deployed shape that maximizes its volume. We focus on the shape and nonlinear mechanics of inflated rings and more generally, of any sealed curvilinear path. We rationalize the stress state of the sheet and infer the counterintuitive increase of curvature observed on inflation. In addition to the change of curvature, wrinkles patterns are observed in the region under compression in agreement with our minimal model. We finally develop a simple numerical tool to solve the inverse problem of programming any 2-dimensional (2D) curve on inflation and illustrate the application potential by moving an object along an intricate target path with a simple pressure input.


Author(s):  
Raffaele Di Gregorio

In spherical-mechanism kinematics, instantaneous pole axes play the same role as, in planar-mechanism kinematics, instant centres. Their locations only depend on the mechanism configuration when spherical single-degree-of-freedom mechanisms are considered. Such a property makes them a tool to visualize and/or to analyse the instantaneous kinematics of those mechanisms. This article addresses the singularity analysis of single-degree-of-freedom spherical mechanisms by exploiting the properties of instantaneous pole axes. An exhaustive enumeration of the geometric conditions which occur for all the singularity types is given, and a general analytical method based on this enumeration is proposed for implementing the singularity analysis. The proposed analytical method can be used to generate systems of equations useful either for finding the singularities of a given mechanism or to synthesize mechanisms that have to match specific requirements about the singularities.


Author(s):  
Robert J. Lang ◽  
Spencer Magleby ◽  
Larry Howell

We present the design for a family of deployable structures based on the origami flasher that are rigidly foldable, i.e., foldable with revolute joints at the hinges and planar rigid faces, and that exhibit a single degree of freedom in their motion. These structures may be used to realize highly compact deployable mechanisms.


Author(s):  
Shengnan Lu ◽  
Dimiter Zlatanov ◽  
Xilun Ding

This paper presents a one-degree-of-freedom network of Bennett linkages which can be deployed to approximate a cylindrical surface. The geometry of the unit mechanism is parameterized and its position kinematics is solved. The influence of the geometric parameters on the deployed shape is examined. Further kinematic analysis isolates those Bennett geometries for which a cylindrical network can be constructed. The procedure for connecting the unit mechanisms in a deployable cylinder is described in detail and used to gain insight into, and formulate some general guidelines for, the design of linkage networks which unfold as curved surfaces. Case studies of deployable structures in the shape of circular and elliptical cylinders are presented. Modeling and simulation validate the proposed approach.


2013 ◽  
Vol 393 ◽  
pp. 354-359
Author(s):  
Muhammad Zahir Hassan ◽  
Muhammad Zaidan Abdul Manaf ◽  
Mohd Shazni Halid ◽  
Muhammad Nadzeer Alehan ◽  
Amjad Saddar Md Isa

The vehicle ride and handling analysis is one of the important aspects in vehicle dynamics. This paper takes a model of amphibious vehicle to establish the exact virtual behavior of vehicles riding and handling base on the virtual design parameter. This vehicle can operate both on ground and water, therefore the analysis model is developed using seven degree of freedom model for ground operation and one degree of freedom model for water operation. The seven DOF are moment of roll, pitch, yaw and all four tires motion while the rest is buoyancy. Therefore, the ability and limitation of the vehicle demonstrate the behavior of unexpected case happened. These facts in turn to be used to improve the ride and handling level during acceleration, deceleration, cornering and step steer. The model also capable to function on the water where as the design of the body work considers the buoyancy concept for stability on every condition of wave surface. The analysis of buoyancy and stability for this model shows the vehicle ability to perform in the state of equilibrium condition under heeling and capsizing on water surface.


Sign in / Sign up

Export Citation Format

Share Document