Analysis of an Integrated Thermal Energy System for Applications in Cold Regions

2021 ◽  
pp. 1-32
Author(s):  
Bismark Addo-Binney ◽  
Wahid Besada ◽  
Martin Agelin-Chaab

Abstract This paper performed analyses on a proposed direct wind-powered heat pump integrated with a pond which serves as an evaporator for space heating in cold regions. The analysis was conducted using environmental data for selected locations in Canada and the Engineering Equation Solver. Three different pairings of heat pumps and wind turbines were studied (a wind-powered heat pump with a pond as an evaporator, a wind-powered heat pump without a pond, and an electricity-powered heat pump). Energy and exergy analyses were performed on the systems. The novelty in the present study is in the use of a wind turbine to directly power the heat pump and using a pond as the evaporator. The results show that the proposed system has the highest coefficient of performance compared to the others. The average coefficient of performance for the selected locations is 2.7, which is at least 67% better than the others. Similarly, the overall exergy for the proposed system is 16.9%, which is at least 40% better than the others. The average heating capacity of the selected locations for the proposed system is 4.5 kW, which is from 29% to 300% better than the others. Additionally, the sustainability index for the proposed system is the highest for the proposed system. The results have shown that the proposed system has superior overall performance for space heating in cold regions.

Energies ◽  
2019 ◽  
Vol 12 (22) ◽  
pp. 4313 ◽  
Author(s):  
Boahen ◽  
Choi

The use of cascade heat pumps for hot water generation has gained much attention in recent times. The big question that has attracted much research interest is how to enhance the performance and energy saving potential of these cascade heat pumps. This study therefore proposed a new cycle to enhance performance of the cascade heat pump by adopting an auxiliary heat exchanger (AHX) in desuperheater, heater and parallel positions at the low stage (LS) side. The new cascade cycle with AHX in desuperheater position was found to have better performance than that with AHX at heater and parallel positions. Compared to the conventional cycle, heating capacity and coefficient of performance (COP) of the new cascade cycle with AHX in desuperheater position increased up to 7.4% and 14.9% respectively.


Energies ◽  
2019 ◽  
Vol 12 (8) ◽  
pp. 1571
Author(s):  
Cristian Sánchez ◽  
Lionel Bloch ◽  
Jordan Holweger ◽  
Christophe Ballif ◽  
Nicolas Wyrsch

Advanced control of heat pumps with thermal storage and photovoltaics has recently been promoted as a promising solution to help decarbonise the residential sector. Heat pumps and thermal storage offer a valuable flexibilisation mean to integrate stochastic renewable energy sources into the electricity grid. Heat pump energy conversion is nonlinear, leading to a challenging nonlinear optimisation problem. However, issues like global optimum uncertainty and the time-consuming methods of current nonlinear programming solvers draw researchers to linearise heat pump models that are then implemented in faster and globally convergent linear programming solvers. Nevertheless, these linearisations generate some inaccuracies, especially in the calculation of the heat pump’s coefficient of performance ( C O P ). In order to solve all of these issues, this paper presents a heuristic control algorithm (HCA) to provide a fast, accurate and near-optimal solution to the original nonlinear optimisation problem for a single-family house with a photovoltaic system, using real consumption data from a typical Swiss house. Results highlight that the HCA solves this optimisation problem up to 1000 times faster, yielding an operation that is up to 49% cheaper and self-consumption rates that are 5% greater than other nonlinear solvers. Comparing the performance of the HCA and the linear solver intlinprog, it is shown that the HCA provides more accurate heat pump control with an increase of up to 9% in system Operating Expense OPEX and a decrease of 8% in self-consumption values.


Energies ◽  
2019 ◽  
Vol 12 (4) ◽  
pp. 766 ◽  
Author(s):  
Jochen Conrad ◽  
Simon Greif

Approximately one quarter of energy-related emissions in Germany are caused by the domestic sector. At 81%, the largest share of these emissions is due to heat supply. Many measures are available to reduce these emissions. One of these measures, which is considered to play an important role in many studies, is the replacement of fossil-fired boilers with electric heat pumps. In order to be able to analyse the impact of high penetrations of heat pumps on the energy system, the coefficient of performance (COP) must be modelled with high temporal resolution. In this study, a methodology is presented on how to calculate high-resolution COPs and the electrical load of heat pumps based on thermal load curves and temperature time series. The COP is determined by the reciprocal Carnot factor. Since heat pumps are often designed bivalently due to the cost structure, the methodology described can also be used for evaluating the combination of immersion heater and heat pump (here for the air/water heat pump). As a result the theoretical hourly COPs determined are calibrated with annual performance factors from field tests. The modelled COPs show clear differences. Currently, mostly air source heat pumps are installed in Germany. If this trend continues, the maximum electrical load of the heat supply will increase more than would be the case with higher shares of ground source heat pumps.


Energies ◽  
2021 ◽  
Vol 14 (12) ◽  
pp. 3563
Author(s):  
Evangelos Bellos ◽  
Christos Tzivanidis

The objective of the present study is the parametric investigation of a ground source heat pump for space heating purposes with boreholes. The working fluid in the heat pump is CO2, and the geothermal field includes boreholes with vertical heat exchangers (U-tube). This study is conducted with a developed model in Engineering Equation Solver which is validated with data from the literature. Ten different parameters are investigated and more specifically five parameters about the heat pump cycle and five parameters for the geothermal unit. The heat pump’s examined parameters are the high pressure, the heat exchanger effectiveness, the temperature level in the heater outlet, the flow rate of the geothermal fluid in the evaporator and the heat exchanger thermal transmittance in the evaporator. The other examined parameters about the geothermal unit are the ground mean temperature, the grout thermal conductivity, the inner diameter of the U-tube, the number of the boreholes and the length of every borehole. In the nominal design, it is found that the system’s coefficient of performance is 4.175, the heating production is 10 kW, the electricity consumption is 2.625 kW, and the heat input from the geothermal field is 10.23 kW. The overall resistance of the borehole per length is 0.08211 mK/W, while there are 4 boreholes with borehole length at 50 m. The parametric analysis shows the influence of the ten examined parameters on the system’s performance and on the geothermal system characteristics. This work can be used as a reference study for the design and the investigation of future geothermal-driven CO2 heat pumps.


2013 ◽  
Vol 17 (5) ◽  
pp. 1261-1268 ◽  
Author(s):  
Xiao-Wei Fan ◽  
Xian-Ping Zhang ◽  
Fu-Jun Ju ◽  
Fang Wang

Nowadays, HCFC22 is widely used in heat pump systems in China, which should be phased out in the future. Thus, eco-friendly mixture CO2/dimethylether is proposed to replace HCFC22. Compared with pure CO2 and pure dimethylether, the mixture can reduce the heat rejection pressure, and suppress the flammability and explosivity of pure dimethylether. According to the Chinese National Standards on heat pump water heater and space heating system, performances of the subcritical heat pump system are discussed and compared with those of the HCFC22 system. It can be concluded that CO2 /dimethylether mixture works efficiently as a refrigerant for heat pumps with a large heat-sink temperature rise. When mass fraction of dimethylether is increased, the heat rejection pressure is reduced. Under the nominal working condition, there is an optimal mixture mass fraction of 28/72 of CO2/dimethylether for water heater application under conventional condensation pressure, 3/97 for space heating application. For water heater application, both the heating coefficient of performance and volumetric heating capacity increase by 17.90% and 2.74%, respectively, compared with those of HCFC22 systems. For space heating application, the heating coefficient of performance increases by 8.44% while volumetric heating capacity decreases by 34.76%, compared with those of HCFC22 systems. As the superheat degree increases, both the heating coefficient of performance and volumetric heating capacity tend to decrease.


Author(s):  
F. J. Smit ◽  
Josua P. Meyer

The applications of hot water in the industrial, domestic and mining applications are numerous, and these are only a few of the core areas of use. In these applications fossil fuels and electrical resistance systems are usually used to heat water to temperatures near boiling point. The refrigerant R22, that is currently being used in hot water heat pumps, delivers hot water temperatures from 60 °C to 65 °C. This limits the applications of hot water heat pumps. This analytical study uses three comparison methods to investigate and compare the potential of a non-azeotropic refrigerant mixture consisting of R22 and R142b. From the results different advantages of non-azeotropic refrigerant mixtures are evident. Depending on the application, if the results of a non-azeotropic refrigerant mixture are compared with a pure R22 heat pump, an increase in hot water temperatures to above boiling point, an increase in coefficient of performance, an increase in capacity and a decrease in compressor pressure ratio are possible. Unfortunately, not all these advantages are valid for each application. For instance, extremely high hot water temperatures are obtained, whilst the heating capacity is excessively low.


A 21 kW ground source heat pump (GSHP) operating since 2013 in Alaska is described in this paper. Six years of successful operation in an extreme climate and measured performance data from 2013 to 2017 prove the viability of heat pumps for extreme cold regions. Summary of performance evaluation data such as monthly electric energy use and cost, savings of the heat pump system compared to the cost of heating oil, energy extracted from the ground, heat delivered to building are tabulated by months. The coefficient of performance (COP) of the heat pump is calculated from the experimental data, which show the COP to vary from a maximum value of 4.15 to a minimum value of 2.34 depending on the heating load of the month and the ground temperature. Cost comparison shows savings by heat pump over regular heating oil boilers of 80% efficiency. In cold regions it is of concern that GSHP can create frozen ground or permafrost around the ground heat exchanger coil by extracting too much heat from the ground. A finite element heat conduction simulation performed over the ground heat exchanger coil spanning over a 30-year period shows that small volumes of frozen ground form around the coil each season, but they melt away during the summer by the recharge of heat from the solar heat gain. The mechanical system of the heat pump, sensors for measurements and cost of the system components are presented, which would be valuable to designers implementing heat pumps in various locations of the world.


2014 ◽  
Vol 1008-1009 ◽  
pp. 1080-1083
Author(s):  
Ying Bai Xie ◽  
Xiao Dong Deng ◽  
Jin He Zhao

Vuilleumier cycle heat pump (VM) has highest efficiency among all heat driven cycle. In this paper, solar, geo-thermal and biomass energy are investigated as input thermal energy to driven VM cycle heat pump. Fuzzy comprehensive evaluation method is applied to evaluate system performances. Initial investment of the system (IS), system reliability (RS), environmental protection of system (EP), VM exergy efficiency (EE) and VM coefficient of performance (COP) are selected as main evaluation indexes. For all the three renewable input energy, system are scored good, solar driven is better than the other two.


2014 ◽  
Vol 18 (suppl.2) ◽  
pp. 417-427 ◽  
Author(s):  
Ibrahim Atmaca ◽  
Sezgi Kocak

Due to use of alternative energy sources and energy efficient operation, heat pumps come into prominence in recent years. Especially in solar-assisted heat pumps, sizing the required system is difficult and arduous task in order to provide optimum working conditions. Therefore, in this study solar assisted indirect expanded heat pump space heating system is simulated and the results of the simulation are compared with available experimental data in the literature in order to present reliability of the model. Solar radiation values in the selected region are estimated with the simulation. The case study is applied and simulation results are given for Antalya, Turkey. Collector type and storage tank capacity effects on the consumed power of the compressor, COP of the heat pump and the overall system are estimated with the simulation, depending on the radiation data, collector surface area and the heating capacity of the space. Exergy analysis is also performed with the simulation and irreversibility, improvement potentials and exergy efficiencies of the heat pump and system components are estimated.


Energies ◽  
2020 ◽  
Vol 14 (1) ◽  
pp. 137
Author(s):  
Florian Schlosser ◽  
Heinrich Wiebe ◽  
Timothy G. Walmsley ◽  
Martin J. Atkins ◽  
Michael R. W. Walmsley ◽  
...  

Heat pumps are the key technology to decarbonise thermal processes by upgrading industrial surplus heat using renewable electricity. Existing insight-based integration methods refer to the idealised Grand Composite Curve requiring the full exploitation of heat recovery potential but leave the question of how to deal with technical or economic limitations unanswered. In this work, a novel Heat Pump Bridge Analysis (HPBA) is introduced for practically targeting technical and economic heat pump potential by applying Coefficient of Performance curves into the Modified Energy Transfer Diagram (METD). Removing cross-Pinch violations and operating heat exchangers at minimum approach temperatures by combined application of Bridge Analysis increases the heat recovery rate and reduce the temperature lift to be pumped at the same time. The insight-based METD allows the individual matching of heat surpluses and deficits of individual streams with the capabilities and performance of different market-available heat pump concepts. For an illustrative example, the presented modifications based on HPBA increase the economically viable share of the technical heat pump potential from 61% to 79%.


Sign in / Sign up

Export Citation Format

Share Document