Forced Turbulent Convection Along Heated and Cooled Walls with Variable Fluid Properties

Author(s):  
Lorenzo Sufrà ◽  
Helfried Steiner

Abstract The effect of temperature depending material properties on heat and momentum transfer along heated/cooled walls in turbulent pipe flow was investigated using direct numerical simulations (DNS). For the considered thermal wall conditions, always associated with a molecular Prandtl number well over unity Prw = 10, the significantly dampened/enhanced turbulent motion caused by the increase/decrease of the viscosity with distance to the heated/cooled wall, turned out to clearly dominate over the opposite trend of the enthalpy fluctuations. The Nusselt number and, quantitatively less pronounced, the wall friction coefficient are accordingly decreased/increased for the heated/cooled case. A comparison against a well established Nu-correlation unveils the limits of the generally applied approach, which is essentially based on uniform bulk flow conditions and subsequently modified accounting for material property variation, when applied to heated and cooled conditions. An enhanced disparity of the turbulent normal stresses is observed inside the inertial subrange for the heated case, indicating a stronger deviation from isotropic turbulence, which possibly challenges mostly isotropic standard turbulence models.

2021 ◽  
Vol 62 (5) ◽  
Author(s):  
M. E. Morsy ◽  
J. Yang

Abstract Particle image velocimetry (PIV) has become a popular non-intrusive tool for measuring various types of flows. However, when measuring three-dimensional flows with two-dimensional (2D) PIV, there are some uncertainties in the measured velocity field due to out-of-plane motion, which might alter turbulence statistics and distort the overall flow characteristics. In the present study, three different turbulence models are employed and compared. Mean and fluctuating fields obtained by three-dimensional computational fluid dynamics modeling are compared to experimental data. Turbulence statistics such as integral length scale, Taylor microscale, Kolmogorov scale, turbulence kinetic energy, dissipation rate, and velocity correlations are calculated at different experimental conditions (i.e., pressure, temperature, fan speed, etc.). A reasonably isotropic and homogeneous turbulence with large turbulence intensities is achieved in the central region extending to almost 45 mm radius. This radius decreases with increasing the initial pressure. The influence of the third dimension velocity component on the measured characteristics is negligible. This is a result of the axisymmetric features of the flow pattern in the current vessel. The results prove that the present vessel can be conveniently adopted for several turbulent combustion studies including mainly the determination of turbulent burning velocity for gaseous premixed flames in nearly homogeneous isotropic turbulence. Graphic abstract


Author(s):  
Adam H. Richards ◽  
Robert E. Spall

A two-equation k-ω model is used to model a strongly heated, low-Mach number gas flowing upward in a vertical tube. Heating causes significant property variation and thickening of the viscous sublayer, consequently a fully developed flow does not evolve. Two-equation turbulence models generally perform poorly under such conditions. Consequently, in the present work, a near-wall two-equation heat transfer model is utilized in conjunction with the k-ω model to improve heat transfer predictions.


Author(s):  
Matt Goodro ◽  
Jongmyung Park ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

Considered are the effects of temperature ratio on the heat transfer from an array of jets impinging on a flat plate. At constant Reynolds number of 18000, and constant Mach number of 0.2, different ratios of target plate temperature to jet temperature are employed. The spacing between holes in the streamwise direction X is 8D, and the spanwise spacing between holes in a given streamwise row Y is also 8D. The target plate is located 3D away from the impingement hole exits. Experimental results show that local, line-averaged, and spatially-averaged Nusselt numbers decrease as the Tw/Tj temperature ratio increases. This is believed to be due to the effects of temperature-dependent fluid properties, as they affect local and global turbulent transport in the flow field created by the array of impinging jets. The effect of temperature ratio on crossflow-to-jet mass velocity ratio and discharge coefficients are also examined.


Author(s):  
B.J McKeon ◽  
J.F Morrison

The streamwise velocity component in turbulent pipe flow is assessed to determine whether it exhibits asymptotic behaviour that is indicative of high Reynolds numbers. The asymptotic behaviour of both the mean velocity (in the form of the log law) and that of the second moment of the streamwise component of velocity in the outer and overlap regions is consistent with the development of spectral regions which indicate inertial scaling. It is shown that an ‘inertial sublayer’ in physical space may be considered as a spatial analogue of the inertial subrange in the velocity spectrum and such behaviour only appears for Reynolds numbers R + >5×10 3 , approximately, much higher than was generally thought.


Measurements of the double and triple velocity correlation functions and of the energy spectrum function have been made in the uniform mean flow behind turbulence-producing grids of several shapes at mesh Reynolds numbers between 2000 and 100000. These results have been used to assess the validity of the various theories which postulate greater or less degrees of similarity or self-preservation between decaying fields of isotropic turbulence. It is shown that the conditions for the existence of the local similarity considered by Kolmogoroff and others are only fulfilled for extremely small eddies at ordinary Reynolds numbers, and that the inertial subrange in which the spectrum function varies as k -35 ( k is the wave-number) is non-existent under laboratory conditions. Within the range of local similarity, the spectrum function is best represented by an empirical function such as k -a log k , and it is concluded that all suggested forms for the inertial transfer term in the spectrum equation are in error. Similarity of the large scale structure of flows of differing Reynolds numbers at corresponding times of decay has been confirmed, and approximate measurements of the Loitsianski invariant in the initial period have been made. Its value, expressed non-dimensionally, decreases slowly with grid Reynolds number within the range of observation. Turbulence-producing grids of widely different shapes are found to produce flows identical in energy decay and in structure of the smaller eddies. The largest eddies depend markedly on the grid shape and are, in general, significantly anisotropic. Within the initial period of decay, the greater part of the energy spectrum function is self-preserving, and this part has a shape independent of the shape of the turbulence-producing grid. The part that is not self-preserving contains at least one-third of the total energy, and it is concluded that theories postulating quasi-equilibrium during decay must be considered with great caution.


2009 ◽  
Vol 131 (7) ◽  
Author(s):  
A. Al-Salaymeh ◽  
O. A. Bayoumi

Tripping devices are usually installed at the entrance of laboratory-scale pipe test sections to obtain a fully developed turbulent flow sooner. The tripping of laminar flow to induce turbulence can be carried out in different ways, such as using cylindrical wires, sand papers, well-organized tape elements, fences, etc. Claims of tripping effects have been made since the classical experiments of Nikuradse (1932, Gesetzmässigkeit der turbulenten Strömung in glatten Rohren, Forschungsheft 356, Ausgabe B, Vol. 3, VDI-Verlag, Berlin), which covered a significant range of Reynolds numbers. Nikuradse’s data have become the metric by which theories are established and have also been the subject of intense scrutiny. Several subsequent experiments reported friction factors as much as 5% lower than those measured by Nikuradse, and the authors of those reports attributed the difference to tripping effects, e.g., work of Durst et al. (2003, “Investigation of the Mean-Flow Scaling and Tripping Effect on Fully Developed Turbulent Pipe Flow,” J. Hydrodynam., 15(1), pp. 14–22). In the present study, measurements with and without ring tripping devices of different blocking areas of 10%, 20%, 30%, and 40% have been carried out to determine the effect of entrance condition on the developing flow field in pipes. Along with pressure drop measurements to compute the skin friction, both the Pitot tube and hot-wire anemometry measurements have been used to accurately determine the mean velocity profile over the working test section at different Reynolds numbers based on the mean velocity and pipe diameter in the range of 1.0×105–4.5×105. The results we obtained suggest that the tripping technique has an insignificant effect on the wall friction factor, in agreement with Nikuradse’s original data.


2008 ◽  
Vol 131 (1) ◽  
Author(s):  
Matt Goodro ◽  
Jongmyung Park ◽  
Phil Ligrani ◽  
Mike Fox ◽  
Hee-Koo Moon

This paper consider the effects of temperature ratio on the heat transfer from an array of jets impinging on a flat plate. At a constant Reynolds number of 18,000 and a constant Mach number of 0.2, different ratios of target plate temperature to jet temperature are employed. The spacing between holes in the streamwise direction X is 8D, and the spanwise spacing between holes in a given streamwise row Y is also 8D. The target plate is located 3D away from the impingement hole exits. Experimental results show that local, line-averaged, and spatially averaged Nusselt numbers decrease as the Twa∕Tj temperature ratio increases. This is believed to be due to the effects of temperature-dependent fluid properties, as they affect local and global turbulent transport in the flow field created by the array of impinging jets. The effect of temperature ratio on crossflow-to-jet mass velocity ratio and discharge coefficients is also examined.


2020 ◽  
Vol 27 ◽  
pp. 00109
Author(s):  
Boris L. Ivanov ◽  
Bulat G. Ziganshin ◽  
Andrey V. Dmitriev ◽  
Maxim A. Lushnov ◽  
Manuel O. Binelo

Currently, there are a lot of applications of vortex technologies. The vortex effect is used in gasdynamic cold generators and vortex cooling chambers. Vortex devices are also used as dehumidifiers, separators, for cooling and heating hydraulic fluids, separating two-phase media, gas mixtures, evacuating, etc. Scientists study the applicability of vortex equipment for traditional and freeze-drying of agricultural products. However, the influence of geometric parameters of vortex devices on the productivity and energy efficiency of temperature separation of gas flows is poorly studied. Research aimed at finding opportunities and expanding the field of application of vortex tubes is an urgent task. The paper describes twodimensional and three-dimensional mathematical models of the swirling gas flow arising in a vortex tube. It presents results of its implementation in the Anсs-Fluent software package. Thermodynamic and hydrodynamic characteristics confirm the effect of temperature separation in a vortex tube. The dependences of temperature separation on the swirl angle and inlet pressure were obtained. For a two-dimensional vortex tube model, calculations were carried out using various turbulence models. The influence of the cross-sectional area at the hot gas flow outlet on temperature separation was studied.


2019 ◽  
pp. 1-12 ◽  
Author(s):  
Riccardo Rubini ◽  
Roberto Maffulli ◽  
Tony Arts

The study of the boundary layer transition plays a fundamental role in the field of turbomachinery. The main reason is the strong influence of the transition on the flow field local parameters, such as skin friction and heat transfer, this variation is reflected on the global ones such as efficiency and heat load of the blade row. Turbulent transition models are nowadays commonly used tools in both CFD research and design practice. It is then of particular interest to understand if they are able to predict the effect of temperature on bypass transition and, in case of positive answer, the reasons of their behaviour. This becomes even more interesting as the effect of the flow aero-thermal coupling becomes prominent in the analysis of such phenomena and is typically not accounted for in the validation of turbulence models. In this work we focus our attention on two state of the art transition model that use two radically different approaches to describe transition. To isolate the effects of the temperature ratio on the transition the simulations have been performed keeping the same values of Reynolds and Mach numbers and changing the value of the wall to freestream Temperature Ratio (TR). The results of the two transition models have been compared between them as well as with experimental results. They show that both models are sensitive to TR, though a locally based (rather than correlation based) approach for transition modelling should be favoured.


Sign in / Sign up

Export Citation Format

Share Document