Isentropic Compressor Efficiency Calculation Method for Small Gasoline Engine Turbocharger Using Supplier Performance Maps

Author(s):  
Georges Salameh ◽  
Guillaume Goumy ◽  
Pascal Chesse

Abstract A turbocharger efficiency performance map given by the supplier is calculated using adiabatic flow equations and non-adiabatic experimental data. The experimental data used for this calculation is measured in hot gas stand conditions which are not adiabatic and the efficiency calculation needs correction. This paper presents a method to correct the isentropic efficiency of a compressor using the supplier maps and a heat transfer model applied on the compressor. Water is circulating in the central housing to cool the turbocharger and this water flow could be considered as insulation for heat transfer between the compressor and the turbine. The thermal effect of the turbine on the compressor is then neglected and the compressor heat flux is calculated and used to correct the isentropic efficiency calculation. The heat transfer is considered between the compressor and the surrounding environment and between the compressor and the central housing. Experimental adiabatic measurements are used to validate the model. Experimental tests are carried with different oil and water temperatures combinations to test the accuracy of the heat transfer model with these different combinations.

2005 ◽  
Vol 128 (4) ◽  
pp. 412-418 ◽  
Author(s):  
Zhipeng Duan ◽  
Y. S. Muzychka

Impingement cooling of plate fin heat sinks is examined. Experimental measurements of thermal performance were performed with four heat sinks of various impingement inlet widths, fin spacings, fin heights, and airflow velocities. The percent uncertainty in the measured thermal resistance was a maximum of 2.6% in the validation tests. Using a simple thermal resistance model based on developing laminar flow in rectangular channels, the actual mean heat transfer coefficients are obtained in order to develop a simple heat transfer model for the impingement plate fin heat sink system. The experimental results are combined into a dimensionless correlation for channel average Nusselt number Nu∼f(L*,Pr). We use a dimensionless thermal developing flow length, L*=(L∕2)∕(DhRePr), as the independent parameter. Results show that Nu∼1∕L*, similar to developing flow in parallel channels. The heat transfer model covers the practical operating range of most heat sinks, 0.01<L*<0.18. The accuracy of the heat transfer model was found to be within 11% of the experimental data taken on four heat sinks and other experimental data from the published literature at channel Reynolds numbers less than 1200. The proposed heat transfer model may be used to predict the thermal performance of impingement air cooled plate fin heat sinks for design purposes.


Author(s):  
Yankun Jiang ◽  
Zhien Liu ◽  
Rolf D. Reitz ◽  
Zheling Dong ◽  
Xiaoming Ye

A transient heat transfer model for the coupling 3-D moving piston assembly-liner system has been successfully improved for predicting temperature distributions in the components of internal combustion engine chamber. In the model the effect of the 3-D friction heat generated at the piston ring/cylinder liner interfaces and the multi-dimensional lubricant film thickness between the piston rings and the liner has been taken into account. A directly coupled finite element method (FEM) is employed in the model for establishing the heat transfer relation among the moving piston assembly-cylinder liner components. A 3-D discrete model of the coupling system is formulated, which includes the piston rings, piston, liner and cylinder. Due to the complexity of the temperature stiffness matrix, a sparse matrix data structure is employed in the model to save the memory and calculation time. Finally, the 3-D coupling heat transfer model has been used to analyze heat transfer processes in a gasoline engine.


2016 ◽  
Vol 1140 ◽  
pp. 51-58
Author(s):  
Christian Bonk ◽  
Milan Vucetic ◽  
Anas Bouguecha ◽  
Bernd Arno Behrens

In this Study a Heat Transfer Model in Combination with Experimental Tests is Used to Determine the Portion of Plastic Work that is Converted into Heat (also Known as the Taylor-Quinney Coefficient, Inelastic Heat Fraction or IHF and Generally Noted β) during the Deformation of Two Modern Automotive Advanced High Strength Steels (AHSS) DP600 and DP1000. Therefore, Uniaxial Tension Tests were Performed under Vacuum in a Deformation-Dilatometer and the Temperature was Captured by Fine-Wire Thermocouples on Three Different Points on the Surface of the Tensile-Specimen during the Plastic Deformation. Afterwards, a Heat Transfer Model was Used to Calculate the Heat Loss at the Points of the Temperature Measurements and they were Accounted in the Final Energy Balance to Determine the Fraction of Plastic Work Converted to Heat. the Results Show that the Fraction of Plastic Work Converted into Heat is Decreasing from 1 to 0.21 over a Tensile Strain Range of 0 to 0.18. Finally, a Finite Element Model of the Tensile Test was Used to Show the Improvement of the Determined Factor in the Calculation of the Temperature Field Compared to the Classical Assumption that β Equals to 0.9.


1998 ◽  
Vol 120 (3) ◽  
pp. 617-623 ◽  
Author(s):  
F. J. Cantelmi ◽  
D. Gedeon ◽  
A. A. Kornhauser

Compression-driven heat transfer is important to the performance of many reciprocating energy-conversion machines. For small pressure variations in cylinder spaces without inflow, heat transfer and power losses are well predicted using a simple heat transfer model which neglects turbulence. In actual engine cylinders, where significant turbulence levels can be generated by high-velocity inflow, a model which neglects turbulence may not be adequate. In this paper, a heat transfer model having an analytical solution is developed for turbulent cylinder spaces based on a mixing length turbulence model. The model is then used to develop expressions for heat-transfer-related power loss and heat transfer coefficient. Predicted results compare favorably with experimental data for two in-flow configurations.


2018 ◽  
Vol 1 (1) ◽  
pp. 142-150
Author(s):  
Murat Tunc ◽  
Ayse Nur Esen ◽  
Doruk Sen ◽  
Ahmet Karakas

A theoretical post-dryout heat transfer model is developed for two-phase dispersed flow, one-dimensional vertical pipe in a post-CHF regime. Because of the presence of average droplet diameter lower bound in a two-phase sparse flow. Droplet diameter is also calculated. Obtained results are compared with experimental values. Experimental data is used two-phase flow steam-water in VVER-1200, reactor coolant system, reactor operating pressure is 16.2 MPa. On heater rod surface, dryout was detected as a result of jumping increase of the heater rod surface temperature. Results obtained display lower droplet dimensions than the experimentally obtained values.


2006 ◽  
Author(s):  
Filip Kitanoski ◽  
Wolfgang Puntigam ◽  
Martin Kozek ◽  
Josef Hager

Sign in / Sign up

Export Citation Format

Share Document