Life Limiting Aspects of an MI SiC/SiC Ceramic Matrix Composite (CMC) in Interlaminar Shear At Elevated Temperature

Author(s):  
Sean Kane ◽  
Ashlynn Stanley ◽  
Luis Sanchez ◽  
D. Calvin Faucett ◽  
Sung R Choi

Abstract Life limiting behavior of an MI SiC/SiC ceramic matrix composite (CMC) was determined under interlaminar shear at 1316oC in air using double-notch-shear (DNS) test specimens. The three different shear loading configurations of dynamic fatigue, static fatigue, and cyclic fatigue were employed to assess their individual respective lives. The MI SiC/SiC CMC exhibited low susceptibility to fatigue ('slow crack growth') regardless of loading configuration. A Life prediction model for interlaminar shear in cyclic fatigue was developed based on the fracture mechanics framework. The newly developed cyclic fatigue model as well as the previously developed dynamic and static fatigue models were all in good agreement with the experimental data, indicating that the governing failure mechanism under interlaminar shear was consistent, independent of fatigue loading configuration.

2021 ◽  
Author(s):  
S. Kane ◽  
A. Stanley ◽  
L. Sanchez ◽  
D. C. Faucett ◽  
S. R. Choi

Abstract Life limiting behavior of an MI SiC/SiC ceramic matrix composite (CMC) was determined under interlaminar shear at 1316°C in air using double-notch-shear (DNS) test specimens. The three different shear loading configurations of dynamic fatigue, static fatigue, and cyclic fatigue were employed to assess their individual respective lives. The MI SiC/SiC CMC exhibited low susceptibility to fatigue (‘slow crack growth’) regardless of loading configuration. A Life prediction model for interlaminar shear in cyclic fatigue was developed based on the fracture mechanics framework. The newly developed cyclic fatigue model as well as the previously developed dynamic and static fatigue models were all in good agreement with the experimental data, indicating that the governing failure mechanism under interlaminar shear was consistent, independent of fatigue loading configuration.


Procedia CIRP ◽  
2021 ◽  
Vol 98 ◽  
pp. 151-156
Author(s):  
Shyam ◽  
M. Shanmuka Srinivas ◽  
Kishor Kumar Gajrani ◽  
A. Udayakumar ◽  
M. Ravi Sankar

Author(s):  
Michael J. Presby ◽  
Nesredin Kedir ◽  
Luis J. Sanchez ◽  
D. Calvin Faucett ◽  
Sung R. Choi ◽  
...  

The life-limiting behavior of an N720/alumina oxide/oxide ceramic matrix composite (CMC) was assessed in tension in air at 1200°C for unimpacted and impacted specimens. CMC targets were subjected to ballistic impact at ambient temperature with an impact velocity of 250 m/s under a full support configuration. Subsequent post-impact ultimate tensile strength was determined as a function of test rate in order to determine the susceptibility to delayed failure, or slow crack growth (SCG). Unimpacted and impacted specimens exhibited a significant dependency of ultimate tensile strength on test rate such that the ultimate tensile strength decreased with decreasing test rate. Damage was characterized using x-ray computed tomography (CT), and scanning electron microscopy (SEM). A phenomenological life prediction model was developed in order to predict life from one loading condition (constant stress-rate loading) to another (constant stress loading). The model was verified in part via a theoretical preloading analysis.


Sign in / Sign up

Export Citation Format

Share Document