scholarly journals Investigation of Structurally and Aerodynamically Mistuned Oscillating Cascade Using Fully-Coupled Method

Author(s):  
Hien M Phan ◽  
Li He

Abstract There seems to be a lack of clear and systematic understanding of physical behaviour and mechanisms of mistuned bladerows, particularly in the context of the aerodynamic mistuning versus the structural (frequency) mistuning. A high-fidelity fully-coupled method is desirable to investigate the vibration characteristics of aeroelasticity problems with strong fluid-structure interaction effects, as well as blade mistuning effects. In the present work, the direct nonlinear time-domain fully-coupled method is adopted to investigate the dynamics mechanism of a mistuned oscillating cascade. The main objectives are two-folds, firstly to elucidate the basic vibration characteristics of a mistuned bladerow, and secondly to examine the aeroelastic effects of mistuning. Three conditions of interest are considered: a) the structural mistuning only, b) the aerodynamic mistuning only, and c) a combination of the two. The present results show that firstly a mistuned configuration tends to vibrate with the same frequency and a predominantly constant inter-blade phase-angle. Vibration amplitudes of the blades vary significantly with a strong mode localization effect for the structural mistuning. For the concurrent structural-aerodynamic mistuning, the localization is stronger than in the standalone structural mistuning case. Secondly, a monotonic increase of the aeroelastic stability with the structural mistuning magnitude is observed. On the other hand, the aerodynamically mistuned cascade shows a stabilizing effect with a small amount of mistuning but exhibits a destabilizing effect with a large mistuning. Furthermore... see paper for the full abstract

2021 ◽  
Author(s):  
H. M. Phan ◽  
L. He

Abstract The uncoupled phase-shifted single-passage simulation is commonly used for turbomachinery aeroelastic problems. However, it has difficulties in dealing with unconventional phenomena such as strong fluid-structure interaction effects as well as blade mistuning effects. Regarding mistuning effects, structural mistuning has been studied extensively while aerodynamic mistuning has received far less attention. There seems to be a lack of clear and systematic understanding of physical behaviour and mechanisms of mistuned bladerows, particularly in the context of the aerodynamic mistuning versus structural one. In the present work, direct fully-coupled method is adopted to investigate the dynamics mechanism of a mistuned oscillating cascade. Both structurally and aerodynamically mistuned cascades show that the blades would couple and oscillate at a unique frequency and a constant inter-blade phase angle regardless of the individual blade’s eigen-frequency. The vibration amplitudes of blades of a mistuned row are different when excited. For structural mistuning, the mode localization effect is seen to be responsible for a monotonic increase of cascade aeroelastic stability with mistuning. On the other hand, the aerodynamically mistuned cascade shows a stabilizing effect at small amount of mistuning but exhibits a destabilizing effect at large mistuning. Such non-monotonic tendency could be explained using the aero-damping decomposition by the influence coefficient approach. At low reduced frequency, there is a striking difference between the tuned and aero-mistuned cascade. Although the tuned cascade is stable, the aero-mistuned cascade may experience flutter. A close inspection of the aero-mistuned cascade flutter reveals that there are two oscillating waves forming a beating signal.


2021 ◽  
Vol 11 (7) ◽  
pp. 3057
Author(s):  
Jin Lu ◽  
Zhigang Wu ◽  
Chao Yang

Both the dynamic characteristics and structural nonlinearities of an actuator will affect the flutter boundary of a fin–actuator system. The actuator models used in past research are not universal, the accuracy is difficult to guarantee, and the consideration of nonlinearity is not adequate. Based on modularization, a high-fidelity modeling method for an actuator is proposed in this paper. This model considers both freeplay and friction, which is easy to expand. It can be directly used to analyze actuator characteristics and perform aeroelastic analysis of fin–actuator systems. Friction can improve the aeroelastic stability, but the mechanism of its influence on the aeroelastic characteristics of the system has not been reported. In this paper, the LuGre model, which can better reflect the friction characteristics, was integrated into the actuator. The influence of the initial condition, freeplay, and friction on the aeroelastic characteristics of the system was analyzed. The comparison of the results with the previous research shows that oversimplified friction models are not accurate enough to reflect the mechanism of friction’s influence. By changing the loads, material, and geometry of contact surfaces, flutter can be effectively suppressed, and the power loss caused by friction can be minimized.


Author(s):  
Seung Ho Cho ◽  
Taehyoun Kim ◽  
Seung Jin Song

This paper presents aerodynamic and aeromechanical analyses for an entire row of fan blades (i.e. tens of blades with a finite aspect ratio) subject to a uniform incoming flow. In this regard, a new unsteady three-dimensional vortex lattice model has been developed for multiple blades in discrete time domain. Using the new model, the characteristics of the unsteady aerodynamic forces on vibrating blades, including their temporal development, are examined. Also, the new aerodynamic model is applied to examine the aeromechanical behavior of fan blades by using a standard eigenvalue analysis. For this analysis, the fan blades have been modeled as three-dimensional plates, and, increasing the number of blades (or solidity) is predicted to destabilize the fan blade row.


2018 ◽  
Vol 21 (16) ◽  
pp. 813-823 ◽  
Author(s):  
John T. Wilson ◽  
Lowell T. Edgar ◽  
Saurabh Prabhakar ◽  
Marc Horner ◽  
Raoul van Loon ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document