Variation of lubricant distribution across the radial direction in a journal bearing

2021 ◽  
pp. 1-20
Author(s):  
Shanshan Wei ◽  
Yuri Kligerman ◽  
Roman Goltsberg ◽  
Izhak Etsion

Abstract A Computational Fluid Dynamics (CFD) analysis of two-phase flow was used to obtain the distribution of lubricant in a journal bearing, including inlet tube and groove. It was found that for an incomplete starting film, the oil spread-length varies along the groove depth and film thickness. The magnitude of variation was found to be independent of the inlet mass flow rate. Numerical simulations of the proposed model show that in the cavitation region the streamlets do not fill the entire film thickness. The present numerical model agrees with experimental observations.

Lubricants ◽  
2019 ◽  
Vol 7 (9) ◽  
pp. 74 ◽  
Author(s):  
Masayuki Ochiai ◽  
Fuma Sakai ◽  
Hiromu Hashimoto

It is important to predict the gaseous phase area of journal bearing. However, a detailed calculation method for such gaseous phase areas has not yet been proposed. In this study, the gaseous-phase areas in small bore journal bearings under flooded and starved lubrication conditions are analyzed in terms of the computational fluid dynamics (CFD) of two-phase flow while using a volume of fluid (VOF) method. Furthermore, the influence of surface tension and vapor pressure conditions were investigated, and the analytical and experimental results were compared. The analytical results of VOF for vapor pressure and surface tension were observed to be consistent with the experimental observations under both flooded and starved lubrication conditions. Furthermore, under starved lubrication condition, the analytical results agree well with the observed results for the interface of the oil film and cavitation upon the rupture of the oil film. While using these results, CFD analysis of the two-phase flow of the VOF can be conducted in terms of vapor pressure and surface tension to estimate the gaseous-phase areas of journal bearings under flooded and starved lubrication conditions.


Author(s):  
Adam Robinson ◽  
Carol Eastwick ◽  
Herve´ Morvan

Within an aero-engine bearing chamber oil is provided to components to lubricate and cool. This oil must be efficiently removed (scavenged) from the chamber to ensure it does not overheat and degrade. Bearing chambers typically contain a sump section with an exit pipe leading to a scavenge pump. In this paper a simplified geometry of a sump section, here simply made of a radial off-take port on a walled inclined plane, is analysed computationally. This paper follows on work presented within GT2008-50634. In the previous paper it was shown that simple gravity draining from a static head of liquid cold be modelled accurately, for what was akin to a deep sump situation fond in integrated gear boxes for example. The work within this paper will show that the draining of flow perpendicular to a moving film can be modelled. This situation is similar to the arrangements found in transmission bearing chambers. The case modelled is of a walled gravity driven film running down a plane with a circular off-take port, this replicates experimental work similar to that reported in GT2008-50632. The commercial computational fluid dynamics (CFD) code, Fluent 6 [1] has been employed for modelling, sing the Volume of Fluid (VOF) approach of Hirt and Nichols [2, 3] to capture the physics of both the film motion and the two phase flow in the scavenge pipe system. Surface tension [4] and a sharpening algorithm [5] are used to complement the representation of the free surface and associated effects. This initial CFD investigation is supported and validated with experimental work, which is only depicted briefly here as it is mainly sued to support the CFD methodology. The case has been modelled in full as well as with the use of a symmetry plane running down the centre of the plane parallel to the channel walls. This paper includes details of the meshing methodology, the boundary conditions sued, which will be shown to be of critical importance to accurate modelling, and the modelling assumptions. Finally, insight into the flow patterns observed for the cases modelled are summarised. The paper further reinforces that CFD is a promising approach to analysing bearing chamber scavenge flows although it can still be relatively costly.


Coatings ◽  
2021 ◽  
Vol 11 (7) ◽  
pp. 799
Author(s):  
Yuanchi Cui ◽  
Xuewen Wang ◽  
Chengpeng Zhang ◽  
Jilai Wang ◽  
Zhenyu Shi

Accurate analysis of the resin filling process into the mold cavity is necessary for the high-precision fabrication of moth-eye nanostructure using the ultraviolet nanoimprint lithography (UV-NIL) technique. In this research, a computational fluid dynamics (CFD) simulation model was proposed to reveal resin filling behavior, in which the effect of boundary slip was considered. By comparison with the experimental results, a good consistency was found, indicating that the simulation model could be used to analyze the resin filling behavior. Based on the proposed model, the effects of process parameters on resin filling behavior were analyzed, including resin viscosity, inlet velocity and resin thickness. It was found that the inlet velocity showed a more significant effect on filling height than the resin viscosity and thickness. Besides, the effects of boundary conditions on resin filling behavior were investigated, and it was found the boundary slip had a significant influence on resin filling behavior, and excellent filling results were obtained with a larger slip velocity on the mold side. This research could provide guidance for a more comprehensive understanding of the resin filling behavior during UV-NIL of subwavelength moth-eye nanostructure.


Author(s):  
Hiroshi Kanno ◽  
Youngbae Han ◽  
Yusuke Saito ◽  
Naoki Shikazono

Heat transfer in micro scale two-phase flow attracts large attention since it can achieve large heat transfer area per density. At high quality, annular flow becomes one of the major flow regimes in micro two-phase flow. Heat is transferred by evaporation or condensation of the liquid film, which are the dominant mechanisms of micro scale heat transfer. Therefore, liquid film thickness is one of the most important parameters in modeling the phenomena. In macro tubes, large numbers of researches have been conducted to investigate the liquid film thickness. However, in micro tubes, quantitative information for the annular liquid film thickness is still limited. In the present study, annular liquid film thickness is measured using a confocal method, which is used in the previous study [1, 2]. Glass tubes with inner diameters of 0.3, 0.5 and 1.0 mm are used. Degassed water and FC40 are used as working fluids, and the total mass flux is varied from G = 100 to 500 kg/m2s. Liquid film thickness is measured by laser confocal displacement meter (LCDM), and the liquid-gas interface profile is observed by a high-speed camera. Mean liquid film thickness is then plotted against quality for different flow rates and tube diameters. Mean thickness data is compared with the smooth annular film model of Revellin et al. [3]. Annular film model predictions overestimated the experimental values especially at low quality. It is considered that this overestimation is attributed to the disturbances caused by the interface ripples.


2013 ◽  
Vol 68 ◽  
pp. 56-62 ◽  
Author(s):  
B. Manshoor ◽  
M. Jaat ◽  
Zaman Izzuddin ◽  
Khalid Amir

Sign in / Sign up

Export Citation Format

Share Document