Active cooling system for downhole electronics in high temperature environments

Author(s):  
Wei Minghui ◽  
Cai Wei ◽  
Xu Mingze ◽  
Deng Shuang

Abstract Downhole high temperature environment is an important factor affecting the performance of downhole instrument electronic system.At present, various active cooling technologies and passive cooling technologies have been proposed to reduce the temperature of downhole electric circuit system.However, passive cooling technologies can only provide limited cooling capacity for drilling tools under high temperature environment, and the duration of cooling is short, which can not meet the long-time drilling task.This paper presents an Active cooling system(ACS)for downhole electronics and the effects of different temperatures on the performance of electronic components are analyzed.The ACS mainly includes a micro supercharger, condenser tube, evaporation pipe, capillary tube and refrigerant.The theoretical analysis of heat transfer and refrigerant capacity in high temperature environment is carried out.The thermal characteristics of the ACS is evaluated experimentally.The results show that the temperature of electronic components can be reduced to below 163°C in the 200°C downhole environment and components.The geomagnetic field data measured by electronic components at room temperature, 200 °C and with ACS are compared.The results show that ACS can keep electronic components working normally.

2008 ◽  
Vol 381-382 ◽  
pp. 169-172
Author(s):  
Y. Yu ◽  
Shu Xing Xu

In this paper, the characteristics of the high temperature environment in tin bath and the practical glassmaking of float glass production are analyzed. Dynamic optical measuring method is selected to measure glass thickness. A semiconductor laser is used for the light source and a linear CCD is used for the detector to pick up data within 600°C on the area of the tin bath. By analyzing and calculating a lot of dynamic measurement experimental data tested with the measurement device. Based upon the theory of heat transfer, the working area of the measurement device can be kept at a constant temperature near the tin bath by using a circulation water-cooling system and low temperature nitrogen. The image processing technology is used for the edge detection and the pixel subdivision in the software of the system. At the same time the factors that influence accuracy of the system are discussed and some compensation measures are also proposed. The accuracy of 5µm dynamic on-line measurement is achieved and the accuracy of static measurement is less than 1µm within the range of 2~20mm thickness of glass. All these make linear CCD can be successfully applied in the practice of high temperature environment.


Author(s):  
Byeong Cheon Kim ◽  
Kyoungsik Chang

Abstract In the present work, the strategy for cooling the manipulator in high temperature environment is studied using both numerical and experimental methods. Since the manipulator is designed to operate in the environment with the maximum 250 °C temperature, fire protection system and the cooling system should be installed for normal operation of the manipulator. The para-aramid-filament with the thickness of 0.5 mm and Graphite felt with the thickness of 5.5mm is considered for fire protection suit and air blowing technique is applied for cooling the electronic circuit and hydraulic pressure cylinders. For numerical simulation, ANSYS Fluent V18.2 is adopted to simulate the convective heat transfer flows and the radiation with the model, S2S (Surface to surface). Two types of blowing techniques are considered, global blowing and local one. Even though the global blowing at the inlet is most effective for cooling system, so much amount of compressed air is required, which means that extra big compression system should be added in the system. The local blowing is applied to the component with small holes of the flexible pipe and the magnitude of the local blowing mass flow rate is 0.0166kg/s. The technique of local blowing is more effective than the global blowing for cooling the system. To validate numerical simulation, the model is tested within the hot temperature chamber whose mean temperature is approximately 250 °C.


2019 ◽  
Author(s):  
Wenkai Gao ◽  
Ke Liu ◽  
Yinao Su ◽  
Limin Sheng ◽  
Chong Cao ◽  
...  

Author(s):  
Liang Du ◽  
Wei-Jun Zhang ◽  
Jian-Jun Yuan

Purpose This paper aims to present the design and experimental tests of an active circulating cooling system for the Experimental Advanced Superconducting Tokamak in-vessel inspection manipulator, which will help the current manipulator prototype to achieve a full-scale in-vessel high temperature environment compatibility. Design/methodology/approach The high-temperature effects and heat transfer conditions of the manipulator under in-vessel environment were analyzed. An active circulating cooling system was designed and implemented on the manipulator prototype. A simulative in-vessel inspection task in a high temperature environment of 100°C was carried out to evaluate the performance of the active circulating cooling system. Findings The proposed active circulating cooling system was proved effective in helping the manipulator prototype to achieve its basic in-vessel inspection capability in a high temperature environment. The active circulating cooling system performance can be further improved considering the cooling structure coefficient differences in different manipulator parts. Originality/value For the first time, the active circulating cooling system was implemented and tested on a full-scale of the in-vessel inspection manipulator. The experimental data of the temperature distribution inside the manipulator and the operating status of the circulating system were helpful to evaluate the current active circulating cooling system design and provided effective guidance for improving the overall system performance.


2009 ◽  
Vol 24 (12) ◽  
pp. 125008 ◽  
Author(s):  
Donagh O'Mahony ◽  
Walter Zimmerman ◽  
Sinje Steffen ◽  
Just Hilgarth ◽  
Pleun Maaskant ◽  
...  

2017 ◽  
Vol 25 (2) ◽  
pp. 353-364 ◽  
Author(s):  
Xiang Yang ◽  
Feng Cao ◽  
Wang Qing ◽  
Zhi-hang Peng ◽  
Yi Wang

Sign in / Sign up

Export Citation Format

Share Document