A Resonance Tracking Algorithm for the Prediction of Turbine Forced Response With Friction Dampers

Author(s):  
C. Bréard ◽  
J. S. Green ◽  
M. Vahdati ◽  
M. Imregun

This paper presents an iterative method for determining the resonant speed shift when non-linear friction dampers are included in turbine blade roots. Such a need arises when conducting response calculations for turbine blades where the unsteady aerodynamic excitation must be computed at the exact resonant speed of interest. The inclusion of friction dampers is known to raise the resonant frequencies by up to 20% from the standard assembly frequencies. The iterative procedure uses a viscous, time-accurate flow representation for determining the aerodynamic forcing, a look-up table for evaluating the aerodynamic boundary conditions at any speed, and a time-domain friction damping module for resonance tracking. The methodology was applied to an HP turbine rotor test case where the resonances of interest were due to the 1T and 2F blade modes under 40 engine-order excitation. The forced response computations were conducted using a multi-stage approach in order to avoid errors associated with “linking” single stage computations since the spacing between the two bladerows was relatively small. Three friction damper elements were used for each rotor blade. To improve the computational efficiency, the number of rotor blades was decreased by 2 to 90 in order to obtain a stator/rotor blade ratio of 4/9. However, the blade geometry was skewed in order to match the capacity (mass flow rate) of the components and the condition being analysed. Frequency shifts of 3.2% and 20.0% were predicted for the 1T/40EO and 2F/40EO resonances in about 3 iterations. The predicted frequency shifts and the dynamic behaviour of the friction dampers were found to be within the expected range. Furthermore, the measured and predicted blade vibration amplitudes showed a good agreement, indicating that the methodology can be applied to industrial problems.

Author(s):  
James H. Little ◽  
Jeffrey L. Kauffman ◽  
Matthias Huels

Predicting the energy dissipation associated with contact of underplatform dampers remains a critical challenge in turbomachinery blade and friction damper design. Typical turbomachinery blade forced vibration response analyses rely on reduced order models and simplified nonlinear codes to predict blade vibration characteristics in a computationally tractable manner. Recent research has focused on both the model reduction process and simulation of the contact dynamics. This paper proposes two academic turbine blade geometries with coupled underplatform dampers as vehicles by which these model reduction and forced response simulation techniques may be compared. The blades correspond to two types of freestanding turbine blades and demonstrate the same qualitative behavior as more complex industry geometries. The blade geometries are fully described here and analyzed using the same procedure as used for an industry-specific blade. Standard results are presented in terms of resonance frequency, amplitude, and damping across a range of aerodynamic excitation. In addition, the predicted blade vibration characteristics are examined under variations in the contact interface: friction coefficient, damper / platform surface roughness, and damper mass, with relative sensitivities to each term generated. Finally, the effect of the number of modes retained in the reduced order model is studied to uncover patterns of convergence as well as to provide additional sets of standard data for comparison with other model reduction and forced response simulation methods.


Author(s):  
Toshimasa Miura ◽  
Naoto Sakai ◽  
Naoki Kanazawa ◽  
Kentaro Nakayama

Abstract State-of-the-art axial compressors of gas turbines employed in power generation plants and aero engines should have both high efficiency and small footprint. Thus, compressors are designed to have thin rotor blades and stator vanes with short axial distances. Recently, problems of high cycle fatigue (HCF) associated with forced response excitation have gradually increased as a result of these trends. Rotor blade fatigue can be caused not only by the wake and potential effect of the adjacent stator vane, but also by the stator vanes of two, three or four compressor stages away. Thus, accurate prediction and suppression methods are necessary in the design process. In this study, the problem of rotor blade vibration caused by the stator vanes of two and three compressor stages away is studied. In the first part of the study, one-way FSI simulation is carried out. To validate the accuracy of the simulation, experiments are also conducted using a gas turbine test facility. It is found that one-way FSI simulation can accurately predict the order of the vibration level. In the second part of the study, a method of controlling the blade vibration is investigated by optimizing the clocking of the stator vanes. It is confirmed that the vibration amplitude can be effectively suppressed without reducing the performance. Through this study, ways to evaluate and control the rotor blade vibration are validated.


Author(s):  
Walter Sextro ◽  
Karl Popp ◽  
Ivo Wolter

Friction dampers are installed underneath the blade platforms to improve the reliability. Because of centrifugal forces the dampers are pressed onto the platforms. Due to dry friction and the relative motion between blades and dampers, energy is dissipated, which results in a reduction of blade vibration amplitudes. The geometry of the contact is in many cases like a Hertzian line contact. A three-dimensional motion of the blades results in a two-dimensional motion of one contact line of the friction dampers in the contact plane. An experiment with one friction damper between two blades is used to verify the two-dimensional contact model including microslip. By optimizing the friction dampers masses, the best damping effects are obtained. Finally, different methods are shown to calculate the envelope of a three-dimensional response of a detuned bladed disk assembly (V84.3-4th-stage turbine blade) with friction dampers.


Author(s):  
Kenan Y. Sanliturk ◽  
David J. Ewins ◽  
Robert Elliott ◽  
Jeff S. Green

Friction dampers have been used to reduce turbine blade vibration levels for a considerable period of time. However, optimal design of these dampers has been quite difficult due both to a lack of adequate theoretical predictions and to difficulties in conducting reliable experiments. One of the difficulties of damper weight optimisation via the experimental route has been the inevitable effects of mistuning. Also, conducting separate experiments for different damper weights involves excessive cost. Therefore, current practice in the turbomachinery industry has been to conduct so-called ‘rainbow tests’ where friction dampers with different weights are placed between blades with a predefined configuration. However, it has been observed that some rainbow test results have been difficult to interpret and have been inconclusive for determining the optimum damper weight for a given bladed-disc assembly. A new method of analysis — a combination of Harmonic Balance Method and structural modification approaches — is presented in this paper for the analysis of structures with friction interfaces and the method is applied to search for qualitative answers about the so-called ‘rainbow tests’ in turbomachinery applications. A simple lumped-parameter model of a bladed-disc model was used and different damper weights were modelled using friction elements with different characteristics. Resonance response levels were obtained for bladed discs with various numbers of blades under various engine-order excitations. It was found that rainbow tests, where friction dampers with different weights are used on the same bladed-disc assembly, can be used to find the optimum damper weight if the mode of vibration concerned has weak blade-to-blade coupling (the case where the disc is almost rigid and blades vibrate almost independently from each other). Otherwise, it is very difficult to draw any reliable conclusion from such expensive experiments.


2021 ◽  
Vol 11 (19) ◽  
pp. 9271
Author(s):  
Heiko Engemann ◽  
Patrick Cönen ◽  
Harshal Dawar ◽  
Shengzhi Du ◽  
Stephan Kallweit

Wind energy represents the dominant share of renewable energies. The rotor blades of a wind turbine are typically made from composite material, which withstands high forces during rotation. The huge dimensions of the rotor blades complicate the inspection processes in manufacturing. The automation of inspection processes has a great potential to increase the overall productivity and to create a consistent reliable database for each individual rotor blade. The focus of this paper is set on the process of rotor blade inspection automation by utilizing an autonomous mobile manipulator. The main innovations include a novel path planning strategy for zone-based navigation, which enables an intuitive right-hand or left-hand driving behavior in a shared human–robot workspace. In addition, we introduce a new method for surface orthogonal motion planning in connection with large-scale structures. An overall execution strategy controls the navigation and manipulation processes of the long-running inspection task. The implemented concepts are evaluated in simulation and applied in a real-use case including the tip of a rotor blade form.


Author(s):  
Scott Dana ◽  
Joseph Yutzy ◽  
Douglas E. Adams

One of the primary challenges in diagnostic health monitoring and control of wind turbines is compensating for the variable nature of wind loads. Given the sometimes large variations in wind speed, direction, and other operational variables (like wind shear), this paper proposes a data-driven, online rotor model identification approach. A 2 m diameter horizontal axis wind turbine rotor is first tested using experimental modal analysis techniques. Through the use of the Complex Mode Indication Function, the dominant natural frequencies and mode shapes of dynamic response of the rotor are estimated (including repeated and pseudo-repeated roots). The free dynamic response properties of the stationary rotor are compared to the forced response of the operational rotor while it is being subjected to wind and rotordynamic loads. It is demonstrated that both narrowband (rotordynamic) and broadband (wind driven) responses are amplified near resonant frequencies of the rotor. Blade loads in the flap direction of the rotor are also estimated through matrix inversion for a simulated set of rotor blade input forces and for the operational loading state of the wind turbine in a steady state condition. The analytical estimates are shown to be accurate at frequencies for which the ordinary coherence functions are near unity. The loads in operation are shown to be largest at points mid-way along the span of the blade and on one of the three blades suggesting this method could be used for usage monitoring. Based on these results, it is proposed that a measurement of upstream wind velocity will provide enhanced models for diagnostics and control by providing a leading indicator of disturbances in the loads.


Author(s):  
Nikola Kovachev ◽  
Christian U. Waldherr ◽  
Jürgen F. Mayer ◽  
Damian M. Vogt

Resonant response of turbomachinery blades can lead to high cycle fatigue (HCF) if the vibration amplitudes are excessive. Accurate and reliable simulations of the forced response phenomenon require detailed CFD and FE models that may consume immense computational costs. In the present study, an alternative approach is applied, which incorporates nonlinear harmonic (NLH) CFD simulations in a one-way fluid-structure interaction (FSI) workflow for the prediction of the forced response phenomenon at reduced computational costs. Five resonance crossings excited by the stator in a radial inflow turbocharger turbine are investigated and the aerodynamic excitation and damping are predicted using this approach. Blade vibration amplitudes are obtained from a subsequent forced response analysis combining the aerodynamic excitation with aerodynamic damping and a detailed structural model of the investigated turbine rotor. A comparison with tip timing measurement data shows that all predicted values lay within the range of the mistuned blade response underlining the high quality of the utilized workflow.


Author(s):  
M. McGugan ◽  
G. Pereira ◽  
B. F. Sørensen ◽  
H. Toftegaard ◽  
K. Branner

The paper proposes a methodology for reliable design and maintenance of wind turbine rotor blades using a condition monitoring approach and a damage tolerance index coupling the material and structure. By improving the understanding of material properties that control damage propagation it will be possible to combine damage tolerant structural design, monitoring systems, inspection techniques and modelling to manage the life cycle of the structures. This will allow an efficient operation of the wind turbine in terms of load alleviation, limited maintenance and repair leading to a more effective exploitation of offshore wind.


Author(s):  
Roque Corral ◽  
Michele Greco ◽  
Almudena Vega

Abstract The effect of the tip-shroud seal on the flutter onset of a shrouded turbine rotor blade, representative of a modern gas turbine, is numerically tested and the contribution to the work-per-cycle of the aerofoil and the tip-shroud are clearly identified. The numerical simulations are conducted using a linearised frequency domain solver. The flutter stability of the shrouded rotor blade is evaluated for an edgewise mode and compared with the standard industrial approach of not including the tip-shroud cavity. It turns out that including the tip shroud significantly changes the stability prediction of the rotor blade. This is due to the fact that the amplitude of the unsteady pressure created in the inter-fin cavity, due to the motion of the airfoil, is much greater than that of the airfoil. It is concluded that the combined effect of the seal and its platform tends to stabilise the rotor blade for all the examined nodal diameters and reduced frequencies. Finally, the numerical results are shown to be consistent with those obtained using an analytical simplified model to account for the effect of the labyrinth seals.


Author(s):  
Stefano Zucca ◽  
Daniele Botto ◽  
Muzio M. Gola

Under-platform dampers are used to reduce resonant stresses in turbine blades to avoid high cycle fatigue failures. In this paper a model of semi-cylindrical under-platform damper (i.e. with one flat side and one curved side) for turbine blades is described. The damper kinematics is characterized by three degrees of freedom (DOFs): in-plane translations and rotation. Static normal loads acting on the damper sides are computed using the three static balance equations of the damper. Non-uniqueness of normal pre-loads acting on the damper sides is highlighted. Implementation of the model in a numerical code for the forced response calculation of turbine blades with under-platform dampers shows that non-uniqueness of normal pre-loads leads to non-uniqueness of the forced response of the system. A numerical test case is presented to show the capabilities of the model and to analyze the effect of the main system parameters (damper mass, excitation force, coefficient of friction and damper rotation) on the damper behavior and on the system dynamics.


Sign in / Sign up

Export Citation Format

Share Document