Prediction of Low Engine Order Inlet Distortion Driven Resonance in a Low Aspect Ratio Fan

Author(s):  
J. G. Marshall ◽  
L. Xu ◽  
J. Denton ◽  
J. W. Chew

This paper presents a forced response prediction of 3 resonances in a low aspect ratio modern fan rotor and compares with other worker’s experimental data. The incoming disturbances are due to low engine-order inlet distortion from upstream screens. The resonances occur in the running range at 3 and 8 engine orders which cross low modes (flap, torsion and stripe) of the blade. The fan was tested with on-blade instrumentation at both on- and off-resonant conditions to establish the unsteady pressures due to known distortion patterns. The resulting steady and unsteady flow in the fan blade passages has been predicted by three methods, all three-dimensional. The first is a linearised unsteady Euler method; the second is a non-linear unsteady Navier-Stokes method; the third method uses a similar level of aerodynamic modelling as the second but also includes a coupled model of the structural dynamics. The predictions for the 3 methods are presented against the test data, and further insight into the problem is obtained through post-processing of the data. Predictions of the blade vibration response are also obtained. Overall the level of agreement between calculations and measurements is considered encouraging although further research is needed.

Author(s):  
C. Bréard ◽  
M. Vahdati ◽  
A. I. Sayma ◽  
M. Imregun

The forced response of a low aspect-ratio transonic fan due to different inlet distortions was predicted using an integrated time-domain aeroelasticity model. A time-accurate, non-linear viscous, unsteady flow representation was coupled to a linear modal model obtained from a standard finite element formulation. The predictions were checked against the results obtained from a previous experimental programme known as “Augmented Damping of Low-aspect-ratio Fans” (ADLARF). Unsteady blade surface pressures, due to inlet distortions created by screens mounted in the intake inlet duct, were measured along a streamline at 85% blade span. Three resonant conditions, namely 1F/3EO, 1T&2F /8EO and 2S/8EO, were considered. Both the amplitude and the phase of the unsteady pressure fluctuations were predicted with and without the blade flexibility. The actual blade displacements and the amount of aerodynamic damping were also computed for the former case. A whole-assembly mesh with about 2,000,000 points was used in some of the computations. Although there were some uncertainties about the aerodynamic boundary conditions, the overall agreement between the experimental and predicted results was found to be reasonably good. The inclusion of the blade motion was shown to have an effect on the unsteady pressure distribution, especially for the 2F/1T case. It was concluded that a full representation of the blade forced response phenomenon should include this feature.


1997 ◽  
Vol 119 (4) ◽  
pp. 665-676 ◽  
Author(s):  
S. R. Manwaring ◽  
D. C. Rabe ◽  
C. B. Lorence ◽  
A. R. Wadia

This paper describes a portion of an experimental and computational program (ADLARF), which incorporates, for the first time, measurements of all aspects of the forced response of an airfoil row, i.e., the flow defect, the unsteady pressure loadings, and the vibratory response. The purpose of this portion was to extend the knowledge of the unsteady aerodynamics associated with a low-aspect-ratio transonic fan where the flow defects were generated by inlet distortions. Measurements of screen distortion patterns were obtained with total pressure rakes and casing static pressures. The unsteady pressure loadings on the blade were determined from high response pressure transducers. The resulting blade vibrations were measured with strain gages. The steady flow was analyzed using a three-dimensional Navier–Stokes solver while the unsteady flow was determined with a quasi-three-dimensional linearized Euler solver. Experimental results showed that the distortions had strong vortical, moderate entropic, and weak acoustic parts. The three-dimensional Navier–Stokes analyses showed that the steady flow is predominantly two-dimensional, with radially outward flow existing only in the blade surface boundary layers downstream of shocks and in the aft part of the suction surface. At near resonance conditions, the strain gage data showed blade-to-blade motion variations and thus, linearized unsteady Euler solutions showed poorer agreement with the unsteady loading data than comparisons at off-resonance speeds. Data analysis showed that entropic waves generated unsteady loadings comparable to vortical waves in the blade regions where shocks existed.


Author(s):  
Zhang Zhang ◽  
Anping Hou ◽  
Wei Tuo ◽  
Aiguo Xia ◽  
Sheng Zhou

Under inlet total pressure distortion, forced response of compressor blades poses a threat to aircraft propulsion system. Research on blade dynamic response is premise and basis for high-cycle fatigue life analysis. Blades of a compressor first rotor row are studied with three dimensional numerical simulation in fluid-structure coupling methods. The inlet distortion’s influence on blade aeroelastic dynamic response and flow field characteristics are analyzed. The results demonstrate that circumferential and radial total pressure distortion should be considered together in the phenomenon of actual inlet distortion induced blade vibration response. At the condition of low angle of attacks, radial distortion intensity is weak, the relation between vibration response level of rotor blades and circumferential distortion intensity is proportional. With the angle of attack increases, the vibratory stress under aerodynamic forces grows sufficiently. The radial total pressure distortion near hub increases dynamic response severity of rotor blades.


1991 ◽  
Vol 35 (04) ◽  
pp. 314-324
Author(s):  
Todd McComb

Using low-aspect-ratio flat ship theory, this paper defines a procedure to determine the position of a hull which is in equilibrium at some "fast" speed in terms of a given hull shape for the same hull at rest. This procedure is then used to find the equilibrium flow past a moving ship, when given the shape of the hull at rest. The method is then extended to find the hull configuration at various speeds based on either the configuration in the static case or at some other equilibrium speed, leading to a calculation of drag versus speed. Some general formulas and some simple examples are given.


2004 ◽  
Vol 128 (3) ◽  
pp. 492-499 ◽  
Author(s):  
Graham Pullan ◽  
John Denton ◽  
Eric Curtis

Experimental data and numerical simulations are presented from a research turbine with low aspect ratio nozzle guide vanes (NGVs). The combined effects of mechanical and aerodynamic constraints on the NGV create very strong secondary flows. This paper describes three designs of NGV that have been tested in the turbine, using the same rotor row in each case. NGV 2 used three-dimensional design techniques in an attempt to improve the performance of the datum NGV 1 blade, but succeeded only in creating an intense vortex shed from the trailing edge (as previously reported) and lowering the measured stage efficiency by 1.1% points. NGV 3 was produced to avoid the “shed vortex” while adopting a highly aft-loaded surface pressure distribution to reduce the influence of the secondary flows. The stage with NGV 3 had an efficiency 0.5% points greater than that with NGV 1. Detailed comparisons between experiment and computations, including predicted entropy generation rates, are used to highlight the areas where the loss reduction has occurred and hence to quantify the effects of employing highly aft-loaded NGVs.


1956 ◽  
Vol 60 (542) ◽  
pp. 137-139
Author(s):  
P. J. Palmer

This note shows how a pure resistance analogue can be used to find the lift on low aspect ratio wings travelling, with small incidence, at speeds close to the sonic velocity.The method is applicable to flat, twisted or cambered wings and is simple in operation; the results obtained being in close agreement with those obtained by calculations based on the same theory.The solutions given in this note are essentially those corresponding to the Jones theory, which is applicable to low aspect ratio wings at small incidence, travelling with velocity close to the sonic value. Under these conditions it has been shown that the three-dimensional problem reduces to a series of two-dimensional problems in planes perpendicular to the direction of motion. Thus the wing can be considered as a series of spanwise sections, the solution for each section, in terms of the velocity potential, being considered in turn.


2012 ◽  
Vol 134 (6) ◽  
Author(s):  
G. Persico ◽  
A. Mora ◽  
P. Gaetani ◽  
M. Savini

In this paper the three-dimensional unsteady aerodynamics of a low aspect ratio, high pressure turbine stage are studied. In particular, the results of fully unsteady three-dimensional numerical simulations, performed with ANSYS-CFX, are critically evaluated against experimental data. Measurements were carried out with a novel three-dimensional fast-response pressure probe in the closed-loop test rig of the Laboratorio di Fluidodinamica delle Macchine of the Politecnico di Milano. An analysis is first reported about the strategy to limit the CPU and memory requirements while performing three-dimensional simulations of blade row interaction when the rotor and stator blade numbers are prime to each other. What emerges as the best choice is to simulate the unsteady behavior of the rotor alone by applying the stator outlet flow field as a rotating inlet boundary condition (scaled on the rotor blade pitch). Thanks to the reliability of the numerical model, a detailed analysis of the physical mechanisms acting inside the rotor channel is performed. Two operating conditions at different vane incidence are considered, in a configuration where the effects of the vortex-blade interaction are highlighted. Different vane incidence angles lead to different size, position, and strength of secondary vortices coming out from the stator, thus promoting different interaction processes in the subsequent rotor channel. However some general trends can be recognized in the vortex-blade interaction: the sense of rotation and the spanwise position of the incoming vortices play a crucial role on the dynamics of the rotor vortices, determining both the time-mean and the time-resolved characteristics of the secondary field at the exit of the stage.


Sign in / Sign up

Export Citation Format

Share Document