Hybrid Heat Engines: The Power Generation Systems of the Future

Author(s):  
Abbie Layne ◽  
Scott Samuelsen ◽  
Mark Williams ◽  
Patricia Hoffman

A hybrid heat engine results from the fusion of a heat engine with a non-heat-engine based cycle (unlike systems). The term combined cycle, which refers to similar arrangements, is reserved for the combination of two or more heat engines (like systems). The resulting product of the integration of a gas turbine and a fuel cell is referred to here as a hybrid heat engine or “Hybrid” for short. The intent of this paper is to provide, to the gas turbine community, a review of the present status of hybrid heat engine technologies. Current and projected activities associated with this emerging concept are also presented. The National Energy Technology Laboratory (NETL) is collaborating with other sponsors and the private sector to develop a Hybrid Program. This program will address the issues of technology development, integration, and ultimately the demonstration of what may be the most efficient of power plants in the world — the Hybrid System. Analyses of several Hybrid concepts have indicated the potential of ultra-high efficiencies (approaching 80%). In the Hybrid, the synergism between the gas turbine and fuel cell provides higher efficiencies and lower costs than either system can alone. Testing of the first Hybrid concept has been initiated at the National Fuel Cell Research Center (NFCRC).

Author(s):  
Abbie Layne ◽  
Scott Samuelsen ◽  
Mark Williams ◽  
Norman Holcombe

A hybrid heat engine results from the fusion of a heat engine with a non-heat-engine based cycle (unlike systems). The term combined cycle, which refers to similar arrangements, is reserved for the combination of two or more heat engines (like systems). The resulting product of the integration of a gas turbine and a fuel cell is referred to here as a hybrid heat engine or “Hybrid” for short. The intent of this paper is to provide, to the gas turbine community, a review of the present status of hybrid heat engine technologies. Current and projected activities associated with this emerging concept are also presented. The National Energy Technology Laboratory (NETL) is collaborating with other sponsors and the private sector to develop a Hybrid Program. This program will address the issues of technology development, integration, and ultimately the demonstration of what may be the most efficient of power plants in the world—the Hybrid System. In the Hybrid, the synergism between the gas turbine and fuel cell provides higher efficiencies and lower costs than either system can alone. Testing of the first hybrid concept has been initiated at the National Fuel Cell Research Center (NFCRC). FuelCell Energy (FCE) will be testing its first hybrid in 2002. Honeywell’s hybrid program has just begun under the Solid State Energy Conversion Alliance (SECA). SECA fuel cells will ultimately be hybridized with turbines. A competitive SECA solicitation is planned for conceptual studies in 2003. Industry teams will be selected in 2004 to further develop hybrid fuel cell systems.


Author(s):  
Hossein Ghezel-Ayagh ◽  
Joseph M. Daly ◽  
Zhao-Hui Wang

This paper summarizes the recent progress in the development of hybrid power systems based on Direct FuelCell/Turbine® (DFC/T®). The DFC/T system is capable of achieving efficiencies well in excess of state-of-the-art gas turbine combined cycle power plants but in much smaller size plants. The advances include the execution of proof-of-concept tests of a fuel cell stack integrated with a microturbine. The DFC/T design concept has also been extended to include the existing gas turbine technologies as well as more advanced ones. This paper presents the results of successful sub-MW proof-of-concept testing, sub-MW field demonstration plans, and parametric analysis of multi-MW DFC/T power plant cycle.


Author(s):  
Steven J. Bossart

The Morgantown Energy Technology Center (METC) of the U.S. Department of Energy (DOE) is actively sponsoring research to develop coal-based power generation systems that use coal more efficiently and economically and with lower emissions than conventional pulverized-coal power plants. Some of the more promising of the advanced coal-based power generation systems are shown in Figure 1: pressurized fluidized-bed combustion combined-cycle (PFBC), integrated gasification combined-cycle (IGCC), and direct coal-fueled turbine (DCFT). These systems rely on gas turbines to produce all or a portion of the electrical power generation. An essential feature of each of these systems is the control of particles at high-temperature and high-pressure (HTHP) conditions. Particle control is needed in all advanced power generation systems to meet environmental regulations and to protect the gas turbine and other major system components. Particles can play a significant role in damaging the gas turbine by erosion, deposition, and corrosion. Erosion is caused by the high-speed impaction of particles on the turbine blades. Particle deposition on the turbine blades can impede gas flow and block cooling air. Particle deposition also contributes to corrosive attack when alkali metal compounds adsorbed on the particles react with the gas turbine blades. Incorporation of HTHP particle control technologies into the advanced power generation systems can reduce gas turbine maintenance requirements, increase plant efficiency, reduce plant capital cost, lower the cost of electricity, reduce wastewater treatment requirements, and eliminate the need for post-turbine particle control to meet New Source Performance Standards (NSPS) for particle emissions.


Author(s):  
Matteo C. Romano ◽  
Stefano Campanari ◽  
Vincenzo Spallina ◽  
Giovanni Lozza

This work discusses the thermodynamic analysis of integrated gasification fuel cell plants, where a simple cycle gas turbine works in a hybrid cycle with a pressurized intermediate temperature–solid oxide fuel cell (SOFC), integrated with a coal gasification and syngas cleanup island and a bottoming steam cycle (reflecting the arrangement of integrated gasification combined cycle (IGCC) plants) to optimize heat recovery and maximize efficiency. This work addresses the optimization of the plant layout, discussing the effect of the SOFC fuel utilization factor and the possibility of a fuel bypass to increase the gas turbine total inlet temperature and reduce the plant expected investment costs. Moreover, a discussion of technological issues related to the feasibility of the connection among the plant high temperature components is carried out, presenting the effects of different limitations of the maximum temperatures reached by the plant piping. With the proposed plant configurations, which do not include—apart from the SOFC—any component far from the nowadays best available technologies, a net electric lower heating value efficiency approaching 52–54% was calculated, showing a remarkable increase with respect to state-of-the-art advanced IGCCs.


1993 ◽  
Author(s):  
C. Wilkes ◽  
R. A. Wenglarz ◽  
P. J. Hart ◽  
H. C. Mongia

This paper describes the application of Allison’s rich-quench-lean (RQL) coal combustor technology to large utility gas turbines in the 100 MWe+ class. The RQL coal combustor technology was first applied to coal derived fuels in the 1970s and has been under development since 1986 as part of a Department of Energy (DOE)-sponsored heat engine program aimed at proof of concept testing of coal-fired gas turbine technology. The 5 MWe proof of concept engine/coal combustion system was first tested on coal water slurry (CWS); it is now being prepared for testing on dry pulverized coal. A design concept to adapt the RQL coal combustor technology developed under the DOE program to large utility-sized gas turbines has been proposed for a Clean Coal V program. The engine and combustion system modifications required for application to coal-fueled combined cycle power plants using 100 MWe+ gas turbines are described. Estimates for emissions and cycle performance are given. Included are comparisons with a conventional pulverized coal plant that illustrates the advantages of incorporating a gas turbine on cycle efficiency and emission rate.


Author(s):  
Adam Doligalski ◽  
Luis Sanchez de Leon ◽  
Pavlos K. Zachos ◽  
Vassilios Pachidis

This paper presents a comparative analysis between two different gas turbine configurations for implementation within combined cycle power plants, aiming to downselect the most promising one in terms of thermal efficiency at design point. The analysed gas turbines both feature the same dual-pressure steam bottoming cycle, but differ in the gas turbine cycle itself: the first configuration comprises a single-shaft reheated gas turbine with variable position of the reheater (representative of the current approach of the industry to combined cycle power plants), whilst the second configuration comprises a dual-shaft reheated-recuperated engine with free power turbine. Comparison of the two competing gas turbine configurations is conducted by means of systematic exploration of the combined cycle design space. The analysis showed that the reheated-recuperated configuration delivers higher thermal efficiency than the more conventional reheated (non-recuperated) gas turbine and is identified, therefore, as a competitive option for future combined cycle power generation systems.


Author(s):  
Caroline Marchmont ◽  
Stefan Florjancic

The power generation mix is in transition with more and more electricity generated by renewable sources. Combined cycle power plants will have to partner with renewable sources and compensate for their fluctuating nature. In preparation for the next generation combined cycles, gas turbine technology development needs to continue to lower the lifecycle costs through increased efficiency, extended maintenance cycles, and reduced emissions. It must now also develop fast ramping capability, account for a wider variation in fuel composition and provide an emission effective part load operation. These needs will be met by refining state of the art technologies and by adding new technologies. This paper provides an overview of the research and development activities and resulting trend in Alstom gas turbine technologies.


2003 ◽  
Vol 23 (17) ◽  
pp. 2169-2182 ◽  
Author(s):  
Manuel Valdés ◽  
Ma Dolores Durán ◽  
Antonio Rovira

2000 ◽  
Vol 124 (1) ◽  
pp. 89-95 ◽  
Author(s):  
G. Lozza ◽  
P. Chiesa

This paper discusses novel schemes of combined cycle, where natural gas is chemically treated to remove carbon, rather than being directly used as fuel. Carbon conversion to CO2 is achieved before gas turbine combustion. The first part of the paper discussed plant configurations based on natural gas partial oxidation to produce carbon monoxide, converted to carbon dioxide by shift reaction and therefore separated from the fuel gas. The second part will address methane reforming as a starting reaction to achieve the same goal. Plant configuration and performance differs from the previous case because reforming is endothermic and requires high temperature heat and low operating pressure to obtain an elevated carbon conversion. The performance estimation shows that the reformer configuration has a lower efficiency and power output than the systems addressed in Part I. To improve the results, a reheat gas turbine can be used, with different characteristics from commercial machines. The thermodynamic efficiency of the systems of the two papers is compared by an exergetic analysis. The economic performance of natural gas fired power plants including CO2 sequestration is therefore addressed, finding a superiority of the partial oxidation system with chemical absorption. The additional cost of the kWh, due to the ability of CO2 capturing, can be estimated at about 13–14 mill$/kWh.


2015 ◽  
Vol 5 (2) ◽  
pp. 89
Author(s):  
Munzer S. Y. Ebaid ◽  
Qusai Z. Al-hamdan

<p class="1Body">Several modifications have been made to the simple gas turbine cycle in order to increase its thermal efficiency but within the thermal and mechanical stress constrain, the efficiency still ranges between 38 and 42%. The concept of using combined cycle power or CPP plant would be more attractive in hot countries than the combined heat and power or CHP plant. The current work deals with the performance of different configurations of the gas turbine engine operating as a part of the combined cycle power plant. The results showed that the maximum CPP cycle efficiency would be at a point for which the gas turbine cycle would have neither its maximum efficiency nor its maximum specific work output. It has been shown that supplementary heating or gas turbine reheating would decrease the CPP cycle efficiency; hence, it could only be justified at low gas turbine inlet temperatures. Also it has been shown that although gas turbine intercooling would enhance the performance of the gas turbine cycle, it would have only a slight effect on the CPP cycle performance.</p>


Sign in / Sign up

Export Citation Format

Share Document