The Integration of Atmospheric Molten Carbonate Fuel Cells With Gas Turbine and Steam Cycles

Author(s):  
Stefano Campanari ◽  
Ennio Macchi

The exploitation of the high-temperature-fuel-cell technology, actually being developed by many companies involved in the gas turbine market, could allow outperforming performance of conventional prime movers based upon fossil fuel combustion. This paper investigates the integration of molten carbonate fuel cells (MCFCs) working at atmospheric pressure with some representative cycle configurations based either on steam and gas turbine cycles. Detailed energy balances of the most promising cycle configurations are presented; fuel cell and conventional components working parameters and technological issues are described and discussed. It is shown that efficiencies well above 60% can be achieved by combining MCFCs either with recuperative gas turbine or steam cycles.

Energies ◽  
2020 ◽  
Vol 13 (6) ◽  
pp. 1361 ◽  
Author(s):  
Jae-Hyeong Yu ◽  
Chang-Whan Lee

Molten carbonate fuel cells (MCFCs) are high-operating-temperature fuel cells with high efficiency and fuel diversity. Electrochemical reactions in MCFCs are exothermic. As the size of the fuel cells increases, the amount of the heat from the fuel cells and the temperature of the fuel cells increase. In this work, we investigated the relationship between the fuel cell stack size and performance by applying computational fluid dynamics (CFD). Three flow types, namely co-flow, cross-flow, and counter-flow, were studied. We found that when the size of the fuel cells increased beyond a certain value, the size of the fuel cell no longer affected the cell performance. The maximum fuel cell temperature converged as the size of the fuel cell increased. The temperature and current density distribution with respect to the size showed a very similar distribution. The converged maximum temperature of the fuel cells depended on the gas flow condition. The maximum temperature of the fuel cell decreased as the amount of gas in the cathode size increased.


Author(s):  
Maurizio Spinelli ◽  
Stefano Campanari ◽  
Stefano Consonni ◽  
Matteo C. Romano ◽  
Thomas Kreutz ◽  
...  

The state-of-the-art conventional technology for postcombustion capture of CO2 from fossil-fueled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. A promising alternative, available in the near future, is the application of molten carbonate fuel cells (MCFC) for CO2 separation from postcombustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC-based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a “retrofit” to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behavior simulated using a 0D model calibrated against manufacturers' specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided (CCA) under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).


Author(s):  
Daniele Chiappini ◽  
Luca Andreassi ◽  
Elio Jannelli ◽  
Stefano Ubertini

The application of high temperature fuel cells in stationary power generation seems to be one of the possible solutions to the problem related to the environment preservation and to the growing interest for distributed electric power generation. Great expectations have been placed on both simple and hybrid fuel cell plants, thus making necessary the evolution of analysis strategies to evaluate thermodynamic performance, design improvements, and acceleration of new developments. This paper investigates the thermodynamic potential of combining traditional internal combustion energy systems (i.e., gas turbine and internal combustion engine) with a molten carbonate fuel cell for medium- and low-scale electrical power productions with low CO2 emissions. The coupling is performed by placing the fuel cell at the exhaust of the thermal engine. As in molten carbonate fuel cells the oxygen-charge carrier in the electrolyte is the carbonate ion, part of the CO2 in the gas turbine flue gas is moved to the anode and then separated by steam condensation. Plant performance is evaluated in function of different parameters to identify optimal solutions. The results show that the proposed power system can be conveniently used as a source of power generation.


2009 ◽  
Vol 192 (1) ◽  
pp. 84-93 ◽  
Author(s):  
D. Sánchez ◽  
R. Chacartegui ◽  
M. Torres ◽  
T. Sánchez

Author(s):  
L. Magistri ◽  
A. Traverso ◽  
A. F. Massardo ◽  
R. K. Shah

The fuel cell system and fuel cell gas turbine hybrid system represent an emerging technology for power generation because of its higher energy conversion efficiency, extremely low environmental pollution and potential use of some renewable energy sources as fuels. Depending upon the type and size of applications, from domestic heating to industrial cogeneration, there are different types of fuel cell technologies to be employed. The fuel cells considered in this paper are the proton exchange membrane (PEMFC), the molten carbonate (MCFC) and the solid oxide (SOFC) fuel cells. In all these systems, heat exchangers play an important and critical role in the thermal management of the fuel cell itself and the boundary components, such as the fuel reformer (when methane or natural gas is used), the air preheating and the fuel cell cooling. In this paper, the impact of heat exchangers on the performance of PEMFC systems and SOFC-MCFC gas turbine hybrid systems is investigated. Several options in terms of cycle layout and heat exchanger technology are discussed from the on-design, off-design and control perspectives. A general overview of the main issues related to heat exchangers performance, cost and durability is presented and the most promising configurations identified.


Author(s):  
Huisheng Zhang ◽  
Hongliang Hao ◽  
Shilie Weng ◽  
Ming Su

Molten carbonate fuel cells have been revealed to be very attractive power generation system, promising highly efficient electricity generation and very low environmental impact. The integration of micro gas turbine and molten carbonate fuel cells has been proposed in the last years as an extremely efficient solution for power generation. A steady-state thermodynamic exergetic model for MCFC/MGT hybrid power system is developed on the IPSEpro simulation platform, and applied to a performance analysis of exergy. The exergy method highlights irreversibility within the system components, and it is of particular interest in this paper. The simulation results show that the coupling of MGT with a MCFC reactor has shown a potential for an exergy efficiency of plant over 55% at design point and high efficiency at off-design point compared to other conventional power system.


Author(s):  
Maurizio Spinelli ◽  
Stefano Campanari ◽  
Matteo C. Romano ◽  
Stefano Consonni ◽  
Thomas G. Kreutz ◽  
...  

The state-of-the-art conventional technology for post combustion capture of CO2 from fossil-fuelled power plants is based on chemical solvents, which requires substantial energy consumption for regeneration. Apromising alternative, available in the near future, is the application of Molten Carbonate Fuel Cells (MCFC) for CO2 separation from post-combustion flue gases. Previous studies related to this technology showed both high efficiency and high carbon capture rates, especially when the fuel cell is thermally integrated in the flue gas path of a natural gas-fired combined cycle or an integrated gasification combined cycle plant. This work compares the application of MCFC based CO2 separation process to pulverized coal fired steam cycles (PCC) and natural gas combined cycles (NGCC) as a ‘retrofit’ to the original power plant. Mass and energy balances are calculated through detailed models for both power plants, with fuel cell behaviour simulated using a 0D model calibrated against manufacturers’ specifications and based on experimental measurements, specifically carried out to support this study. The resulting analysis includes a comparison of the energy efficiency and CO2 separation efficiency as well as an economic comparison of the cost of CO2 avoided under several economic scenarios. The proposed configurations reveal promising performance, exhibiting very competitive efficiency and economic metrics in comparison with conventional CO2 capture technologies. Application as a MCFC retrofit yields a very limited (<3%) decrease in efficiency for both power plants (PCC and NGCC), a strong reduction (>80%) in CO2 emission and a competitive cost for CO2 avoided (25–40 €/ton).


Sign in / Sign up

Export Citation Format

Share Document