Options to Maximize Power Output for Merchant Plants in Combined Cycle Applications

Author(s):  
Rattan Tawney ◽  
Cheryl Pearson ◽  
Mona Brown

Deregulation and growth in the power industry are causing dramatic changes in power production and distribution. The demand for peak power and potentially high revenues due to premium electricity rates has attracted independent developers to the concept of Merchant Power Plants (MPPs). Over 100,000 MW of greenfield capacity is currently being developed through approximately 200 merchant plants in North America. These MPPs will have no captive customers or long-term power purchase agreements, but will rely on selling electricity into a volatile electricity spot market. Because of this, MPPs need the capability to export as much power as possible on demand. MPPs must also have the capability to produce significant assets in order to compete in the marketplace, based on both technical and commercial operation factors such as value engineering, life-cycle cost management, and information technology. It is no surprise then, that almost all merchant project developers have specified combined cycle (CC) technology. The CC power plant offers the highest thermal efficiency of all electric generating systems commercially available today. It also exhibits low capital costs, low emissions, fuel and operating flexibility, low operation and maintenance costs, short installation schedule, and high reliability/availability. However, since gas turbines (GTs) are the basis for CC power plants, these plants experience power output reductions in the range of 10 to 15 percent during summer months, the period most associated with peak power demand. In order to regain this loss of output as well as to provide additional power to meet peak demands, the most common options are GT inlet fogging, GT steam injection, and heat recovery steam generator (HRSG) supplemental firing. This paper focuses on plant design, cycle performance, and the economics of plant configuration associated with these options. Guidelines are presented in this paper to assist the owner in selecting power enhancement options for the MPP that will maximize their Return on Equity (ROE).

Author(s):  
S. Can Gulen ◽  
Raub W. Smith

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy utilizing the second law of thermodynamics. The classical first law approach, i.e. the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple, fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy.


Author(s):  
S. Can Gülen ◽  
Raub W. Smith

A significant portion of the new electrical generating capacity installed in the past decade has employed heavy-duty gas turbines operating in a combined cycle configuration with a steam turbine bottoming cycle. In these power plants approximately one-third of the power is generated by the bottoming cycle. To ensure that the highest possible combined cycle efficiency is realized it is important to develop the combined cycle power plant as a system. Doing so requires a solid understanding of the efficiency entitlement of both, topping and bottoming, cycles separately and as a whole. This paper describes a simple but accurate method to estimate the Rankine bottoming cycle power output directly from the gas turbine exhaust exergy, utilizing the second law of thermodynamics. The classical first law approach, i.e., the heat and mass balance method, requires lengthy calculations and complex computer-based modeling tools to evaluate Rankine bottoming cycle performance. In this paper, a rigorous application of the fundamental thermodynamic principles embodied by the second law to the major cycle components clearly demonstrates that the Rankine cycle performance can be accurately represented by several key parameters. The power of the second law approach lies in its ability to highlight the theoretical entitlement and state-of-the-art design performances simultaneously via simple fundamental relationships. By considering economically and technologically feasible upper limits for the key parameters, the maximum achievable bottoming cycle power output is readily calculable for any given gas turbine from its exhaust exergy.


Author(s):  
M. D. Duran ◽  
A. Rovira

It is the purpose of this work to show how to select the best configuration as a function of the combined cycle power. It uses thermo-economic optimization technique based on flexible genetic algorithms (GA). These results will be based on a Thermoeconomic model developed in previous works, this maximizes the cash flow by choosing the correct parameters for the plant design — particularly those corresponding to the HRSG — subject to the restriction that hypothetical, but realistic turbines have already been chosen. This study begins with an analysis of the trends in the commercial gas turbines (GT) design. It was observed that in spite of the diverse companies, the design parameters as well as the turbine cost, follow certain trends depending on the turbine power. When a CCGT power plant is planned, once the GT is selected, is necessary to determine which configuration of the HRSG is the most appropriate in order to get the maximum performance and the best economical results. There is a wide variety of selections of CCGT power plants configurations. To facilitate the analysis of this ample number of CCGT systems we will apply our study to the following types of HRSG: Double pressure with and without reheater, Triple pressure levels with reheater and Triple pressure levels with reheater and supercritical pressure. As a result of this study it may be observed that some design trends should be established so as to decide which configuration (including supercritical cycles) is better to select to specific power.


Author(s):  
Anup Singh

In the 1970s, power generation from gas turbines was minimal. Gas turbines in those days were run on fuel oil, since there was a so-called “natural gas shortage”. The U.S. Fuel Use Act of 1978 essentially disallowed the use of natural gas for power generation. Hence there was no incentive on the part of gas turbine manufacturers to invest in the development of gas turbine technology. There were many regulatory developments in the 1980s and 1990s, which led to the rapid growth in power generation from gas turbines. These developments included Public Utility Regulatory Policy Act of 1978 (encouraging cogeneration), FERC Order 636 (deregulating natural gas industry), Energy Policy Act of 1992 (creating EWGs and IPPs) and FERC Order 888 (open access to electrical transmission system). There was also a backlash from excessive electric rates due to high capital recovery of nuclear and coal-fired plant costs caused by tremendous cost increase resulting from tightening NRC requirements for nuclear plants and significant SO2/NOx/other emissions controls required for coal-fired plants. During this period, rapid technology developments took place in the metallurgy, design, efficiency, and reliability of gas turbines. In addition, U.S. DOE contributed to these developments by encouraging research and development efforts in high temperature and high efficiency gas turbines. Today we are seeing a tremendous explosion of power generating facilities by electric utilities and Independent Power Producers (IPPs). A few years ago, Merchant Power (generation without power purchase agreements) was unheard of. Today it is growing at a very fast pace. Can this rapid growth be sustained? The paper will explore the factors that will play a significant role in the future growth of gas turbine-based power generation in the U.S. The paper will also discuss the methods and developments that could decrease the capital costs of gas turbine power plants resulting in the lowest cost generation compared to other power generation technologies.


Author(s):  
M. J. J. Linnemeijer ◽  
J. P. van Buijtenen ◽  
A. U. van Loon

This paper describes the conversion of existing conventional steam power plants into combined cycle plants. A number of Dutch utility companies are currently performing or planning this conversion on their gas-fired power stations, mainly in order to conserve fuel. Modifications of boiler and steam cycle, necessary for the new concept, are presented in general terms, together with a detailed description of one of the projects.


Author(s):  
Ibrahim Sinan Akmandor ◽  
O¨zhan O¨ksu¨z ◽  
Sec¸kin Go¨kaltun ◽  
Melih Han Bilgin

A new methodology is developed to find the optimal steam injection levels in simple and combined cycle gas turbine power plants. When steam injection process is being applied to simple cycle gas turbines, it is shown to offer many benefits, including increased power output and efficiency as well as reduced exhaust emissions. For combined cycle power plants, steam injection in the gas turbine, significantly decreases the amount of flow and energy through the steam turbine and the overall power output of the combined cycle is decreased. This study focuses on finding the maximum power output and efficiency of steam injected simple and combined cycle gas turbines. For that purpose, the thermodynamic cycle analysis and a genetic algorithm are linked within an automated design loop. The multi-parameter objective function is either based on the power output or on the overall thermal efficiency. NOx levels have also been taken into account in a third objective function denoted as steam injection effectiveness. The calculations are done for a wide range of parameters such as compressor pressure ratio, turbine inlet temperature, air and steam mass flow rates. Firstly, 6 widely used simple and combined cycle power plants performance are used as test cases for thermodynamic cycle validation. Secondly, gas turbine main parameters are modified to yield the maximum generator power and thermal efficiency. Finally, the effects of uniform crossover, creep mutation, different random number seeds, population size and the number of children per pair of parents on the performance of the genetic algorithm are studied. Parametric analyses show that application of high turbine inlet temperature, high air mass flow rate and no steam injection lead to high power and high combined cycle thermal efficiency. On the contrary, when NOx reduction is desired, steam injection is necessary. For simple cycle, almost full amount of steam injection is required to increase power and efficiency as well as to reduce NOx. Moreover, it is found that the compressor pressure ratio for high power output is significantly lower than the compressor pressure ratio that drives the high thermal efficiency.


Author(s):  
R. Bettocchi ◽  
G. Cantore ◽  
G. Negri di Montenegro ◽  
A. Peretto ◽  
E. Gadda

Geothermal power plants have difficulties due to the low conversion efficiencies achievable. Geothermal integrated combined cycle proposed and analyzed in this paper is a way to achieve high efficiency. In the proposed cycle the geothermal fluid energy is added, through suitable heat ecxhangers, to that of exhaust gases for generating a steam cycle. The proposed cycle maintains the geothermal fluid segregated from ambient and this can be positive on the environmental point of view. Many systems configurations, based on this possibility, can be taken into account to get the best thermodynamic result. The perfomed analysis examines different possible sharings between the heat coming from geothermal and exhaust gases, and gives the resulting system efficiencies. Various pressures of the geothermal steam and water dominated sources are also taken into account. As a result the analysis shows that the integrated plant power output is largely greater than the total power obtained by summing the gas turbine and the traditional geothermal plant power output, considered separately.


2018 ◽  
Vol 141 (1) ◽  
Author(s):  
Max H. Baumgärtner ◽  
Thomas Sattelmayer

Volatile renewable energy sources induce power supply fluctuations. These need to be compensated by flexible conventional power plants. Gas turbines in combined cycle power plants adjust the power output quickly but their turn-down ratio is limited by the slow reaction kinetics, which leads to CO and unburned hydrocarbon emissions. To extend the turn-down ratio, part of the fuel can be converted to syngas, which exhibits a higher reactivity. By an increasing fraction of syngas in the fuel, the reactivity of the mixture is increased and total fuel mass flow and the power output can be reduced. An autothermal on-board syngas generator in combination with two different burner concepts for natural gas (NG)/syngas mixtures was presented in a previous study (Baumgärtner, M. H., and Sattelmayer, T., 2017, “Low Load Operation Range Extension by Autothermal On-Board Syngas Generation,” ASME J. Eng. Gas Turbines Power, 140(4), p. 041505). The study at hand shows a mass-flow variation of the reforming process with mass flows, which allow for pure syngas combustion and further improvements of the two burner concepts which result in a more application-oriented operation. The first of the two burner concepts comprises a generic swirl stage with a central lance for syngas injection. Syngas is injected with swirl to avoid a negative impact on the total swirl intensity and nonswirled. The second concept includes a central swirl stage with an outer ring of jets. For this burner, syngas is injected in both stages to avoid NOx emissions from the swirl stage. Increased NOx emissions produced by NG combustion of the swirl pilot were reported in last year's paper. For both burners, combustion performance is analyzed by OH*-chemiluminescence and gaseous emissions. The lowest possible adiabatic flame temperature without a significant increase of CO emissions was 170–210 K lower for the syngas compared to low load pure NG combustion. This corresponds to a decrease of 15–20% in terms of thermal power.


Author(s):  
Michael Welch

Combined Cycle Gas Turbine (CCGT) power plant offer operators both environmental and economic benefits. The high efficiency achievable across a wide load range reduces both fuel costs and CO2 emissions to atmosphere. However, the scale of the power generation plays a major role in determining both cost and efficiency: a modern large centralized CCGT of 600MW output or more will have a full load efficiency in excess of 60% and a very competitive installed cost on a US$/kW basis. The smaller gas turbines required for distributed power applications are not optimized for combined cycle operation, with potential full load efficiencies of a combined cycle scheme ranging from a little over 40% to the high 50s depending on the power output of the gas turbine, the exhaust gas conditions and the plant configuration, while the installed cost is around twice that of a large centralized CCGT on a US$/kW basis. The drawback of a conventional combined cycle plant design is the need for water, which is a scarce commodity in some regions. Air cooling of the CCGT plant can be used to reduce water consumption, but make-up water will still be required for the steam system to compensate for steam losses, blowdown etc. While the lower exhaust gas temperatures of the smaller gas turbines impact the combined cycle efficiencies achievable, they do allow Organic Rankine Cycle (ORC) technology to be considered for an alternative combined cycle configuration. This paper compares both the capital and operating costs and performance of combined cycle power plants for distributed power applications in the 30MW to 250MW power range based on conventional steam and various different ORC configurations.


1993 ◽  
Author(s):  
C. Wilkes ◽  
R. A. Wenglarz ◽  
P. J. Hart ◽  
H. C. Mongia

This paper describes the application of Allison’s rich-quench-lean (RQL) coal combustor technology to large utility gas turbines in the 100 MWe+ class. The RQL coal combustor technology was first applied to coal derived fuels in the 1970s and has been under development since 1986 as part of a Department of Energy (DOE)-sponsored heat engine program aimed at proof of concept testing of coal-fired gas turbine technology. The 5 MWe proof of concept engine/coal combustion system was first tested on coal water slurry (CWS); it is now being prepared for testing on dry pulverized coal. A design concept to adapt the RQL coal combustor technology developed under the DOE program to large utility-sized gas turbines has been proposed for a Clean Coal V program. The engine and combustion system modifications required for application to coal-fueled combined cycle power plants using 100 MWe+ gas turbines are described. Estimates for emissions and cycle performance are given. Included are comparisons with a conventional pulverized coal plant that illustrates the advantages of incorporating a gas turbine on cycle efficiency and emission rate.


Sign in / Sign up

Export Citation Format

Share Document