Pressure and Suction Surfaces Redesign for High Lift Low Pressure Turbines

Author(s):  
P. González ◽  
I. Ulizar ◽  
R. Vázquez ◽  
H. P. Hodson

Nowadays there is a big effort toward improving the low pressure turbine efficiency even to the extent of penalising other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behaviour of both pressure and suction surfaces has been investigated for the case of a high lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists on two different sets of experiments: the first one concluded an improved pressure surface definition and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to mid-chord. The second profile is a hollow design with the same suction surface as the first one but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile but more aft loaded suction surface. The study is part of a wider on-going research programme covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90% of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended as profile aft loading would not be a completely secure method for reducing losses.

2002 ◽  
Vol 124 (2) ◽  
pp. 161-166 ◽  
Author(s):  
P. Gonza´lez ◽  
I. Ulizar ◽  
R. Va´zquez ◽  
H. P. Hodson

Nowadays there is a big effort toward improving the low-pressure turbine efficiency even to the extent of penalizing other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface, or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behavior of both pressure and suction surfaces has been investigated for the case of a high-lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists of two different sets of experiments: the first one concluded an improved pressure surface definition, and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to midchord. The second profile is a hollow design with the same suction surface as the first one, but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile, but more aft loaded suction surface. The study is part of a wider ongoing research program covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90 percent of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended, as profile aft loading would not be a completely secure method for reducing losses.


2007 ◽  
Vol 111 (1118) ◽  
pp. 257-266 ◽  
Author(s):  
R. J. Howell ◽  
K. M. Roman

This paper describes how it is possible to reduce the profile losses on ultra high lift low pressure (LP) turbine blade profiles with the application of selected surface roughness and wake unsteadiness. Over the past several years, an understanding of wake interactions with the suction surface boundary layer on LP turbines has allowed the design of blades with ever increasing levels of lift. Under steady flow conditions, ultra high lift profiles would have large (and possibly open) separation bubbles present on the suction side which result from the very high diffusion levels. The separation bubble losses produced by it are reduced when unsteady wake flows are present. However, LP turbine blades have now reached a level of loading and diffusion where profile losses can no longer be controlled by wake unsteadiness alone. The ultra high lift profiles investigated here were created by attaching a flap to the trailing edge of another blade in a linear cascade — the so called flap-test technique. The experimental set-up used in this investigation allows for the simulation of upstream wakes by using a moving bar system. Hotwire and hotfilm measurements were used to obtain information about the boundary-layer state on the suction surface of the blade as it evolved in time. Measurements were taken at a Reynolds numbers ranging between 100,000 and 210,000. Two types of ultra high lift profile were investigated; ultra high lift and extended ultra high lift, where the latter has 25% greater back surface diffusion as well as a 12% increase in lift compared to the former. Results revealed that distributed roughness reduced the size of the separation bubble with steady flow. When wakes were present, the distributed roughness amplified disturbances in the boundary layer allowing for more rapid wake induced transition to take place, which tended to eliminate the separation bubble under the wake. The extended ultra high lift profile generated only slightly higher losses than the original ultra high lift profile, but more importantly it generated 12% greater lift.


Author(s):  
Shuang Sun ◽  
Xingshuang Wu ◽  
Tianrong Tan ◽  
Canlin Zuo ◽  
Sirui Pan ◽  
...  

Abstract At low Reynolds numbers operating condition, the boundary layer of the high-lift low-pressure turbine (LPT) of aero-engines is prone to separate on the suction surface of the airfoil. The profile losses of the airfoil are largely governed by the size of the separation bubble and the transition process in the boundary layer. However, the wake-induced transition, the natural transition and the instability induced by the Klebanoff streaks complicate the transition process. The boundary layer on the suction surface of a high-lift LPT was investigated at Re = 50,000 with upstream wakes. The numerical simulation was performed with the CFX software using large eddy simulations (LES), and the experiment was performed on a linear cascade. In this study, the wake is divided into the wake center and the wake tail, the unsteady formation process of the streaks and the wall shear stress caused by the wake are analyzed. A new mechanism of generation and development of Klebanoff Streaks was presented to better understand the effect of the wake on the boundary layer. Moreover, it was found that after entering the blade passage, the wake center does not contact the blade but causes the wall shear stress of the front part on the suction surface to increase. However, it is not possible to form strong Klebanoff streaks at the leading edge of the blade by shear sheltering effect. Only the wake tail can form Klebanoff streaks when it contacts the blade.


Author(s):  
Xue Feng Zhang ◽  
Maria Vera ◽  
Howard Hodson ◽  
Neil Harvey

An experimental study was conducted to improve the performance of an aft-loaded ultra-high-lift low-pressure turbine blade known as U2 at low Reynolds numbers. This was achieved by manipulation of the laminar-turbulent transition process on the suction surface. The U2 profile was designed to meet the targets of reduced cost, weight and fuel burn of aircraft engines. The studies were conducted on both low-speed and high-speed experimental facilities under the unsteady flow conditions with upstream passing wakes. The current paper presents the low-speed investigation results. On the smooth suction surface, the incoming wakes are not strong enough to suppress the separation bubble due to the strong adverse pressure gradient on the suction surface and the low wake passing frequency, which allows the separation between the wakes more time to re-establish. Therefore, the profile losses of this ultra-high-lift blade are not as low as conventional or high-lift blades at low Reynolds numbers even in unsteady flows. Two different types of passive separation control devices, i.e. surface trips and air jets, were investigated to further improve the blade performance. The measurement results show that the profile losses can be further reduced to the levels similar to those of the high-lift and conventional blades due to the aft-loaded nature of this ultra-high-lift blade. Detailed surveys of the blade surface boundary layer developments showed that the loss reduction was due to the suppression of the separation underneath the wakes, the effect of the strengthened calmed region and the smaller separation bubble between wakes.


2005 ◽  
Vol 128 (3) ◽  
pp. 517-527 ◽  
Author(s):  
Xue Feng Zhang ◽  
Maria Vera ◽  
Howard Hodson ◽  
Neil Harvey

An experimental study was conducted to improve the performance of an aft-loaded ultra-high-lift low-pressure turbine blade known as U2 at low Reynolds numbers. This was achieved by manipulation of the laminar-turbulent transition process on the suction surface. The U2 profile was designed to meet the targets of reduced cost, weight and fuel burn of aircraft engines. The studies were conducted on both low-speed and high-speed experimental facilities under the unsteady flow conditions with upstream passing wakes. The current paper presents the low-speed investigation results. On the smooth suction surface, the incoming wakes are not strong enough to suppress the separation bubble due to the strong adverse pressure gradient on the suction surface and the low wake passing frequency, which allows the separation between the wakes more time to re-establish. Therefore, the profile losses of this ultra-high-lift blade are not as low as conventional or high-lift blades at low Reynolds numbers even in unsteady flows. Two different types of passive separation control devices, i.e., surface trips and air jets, were investigated to further improve the blade performance. The measurement results show that the profile losses can be further reduced to the levels similar to those of the high-lift and conventional blades due to the aft-loaded nature of this ultra-high-lift blade. Detailed surveys of the blade surface boundary layer developments showed that the loss reduction was due to the suppression of the separation underneath the wakes, the effect of the strengthened calmed region and the smaller separation bubble between wakes.


2004 ◽  
Vol 126 (4) ◽  
pp. 536-543 ◽  
Author(s):  
R. D. Stieger ◽  
H. P. Hodson

A detailed experimental investigation was conducted into the interaction of a convected wake and a separation bubble on the rear suction surface of a highly loaded low-pressure (LP) turbine blade. Boundary layer measurements, made with 2D LDA, revealed a new transition mechanism resulting from this interaction. Prior to the arrival of the wake, the boundary layer profiles in the separation region are inflexional. The perturbation of the separated shear layer caused by the convecting wake causes an inviscid Kelvin-Helmholtz rollup of the shear layer. This results in the breakdown of the laminar shear layer and a rapid wake-induced transition in the separated shear layer.


Author(s):  
Ken-ichi Funazaki ◽  
Kazutoyo Yamada ◽  
Nozomi Tanaka ◽  
Yasuhiro Chiba

This paper deals with experimental investigation on the interaction between inlet freestream turbulence and boundary layers with separation bubble on a low-pressure turbine airfoil under several High Lift conditions. Solidity of the cascade can be reduced by increasing the airfoil pitch by 25%, while maintaining the throat in the blade-to-blade passage. Reynolds number examined is 57000, based on chord length and averaged exit velocity. Freestream turbulence intensity at the inlet is varied from 0.80% (no grid condition) to 2.1% by use of turbulence grid. Hot-wire probe measurements of the boundary layer on the suction surface for Low Pressure (LP) turbines rotor are carried out to obtain time-averaged and time-resolved characteristics of the boundary layers under the influence of the freestream turbulence. Frequency analysis extracts some important features of the unsteady behaviors of the boundary layer, including vortex formation and shedding. Numerical analysis based on high resolution Large Eddy Simulation is also executed to enhance the understanding on the flow field around the highly loaded turbine airfoils. Standard Smagorinsky model is employed as subgrid scale model. Emphasis of the simulation is placed on the relationship of inherent instability of the shear layer of the separation bubble and the freestream turbulence.


Author(s):  
Ken-ichi Funazaki ◽  
Takahiro Shiba ◽  
Haruyuki Tanimitsu

This paper deals with studies on the flow field around three types of linear cascades of low pressure turbine (LPT) airfoils with different chordwise loading distributions, while keeping the aerodynamic loading index almost the same. The purpose of the low-speed linear cascade study is to clarify the performance of newly designed two ultra high-lift blade (UHL blade) and compare each of them to that of the conventional LPT blade (Base Model) with low solidity through the measurements of boundary layers accompanied by separation bubble for low Reynolds number conditions. Cylindrical bars on the timing belts work as wake generator to emulate upstream stator wakes that impact the boundary layer on the airfoil suction surface. Freestream turbulence is also enhanced by use of passive turbulence grid. In addition to the pneumatic probe measurements of the midspan loss characteristics of each of the cascades, hot-wire probe measurement is conducted over the blade suction surface to understand to what extent and how the interaction of incoming wakes as well as freestream turbulence affect the boundary layer and separation bubble. Computational Fluid Dynamics (CFD) analyses are also applied to the flow fields around the cascades, mainly using Large-Eddy Simulation (LES) with dynamic Smagorinsky subgrid scale model.


Author(s):  
Jeffery P. Bindon

The pressure distribution in the tip clearance region of a 2D turbine cascade was examined with reference to unknown factors which cause high heat transfer rates and burnout along the edge of the pressure surface of unshrouded cooled axial turbines. Using a special micro-tapping technique, the pressure along a very narrow strip of the blade edge was found to be 2.8 times lower than the cascade outlet pressure. This low pressure, coupled with a thin boundary layer due to the intense acceleration at gap entry, are believed to cause blade burnout. The flow phenomena causing the low pressure are of very small scale and do not appear to have been previously reported. The ultra low pressure is primarily caused by the sharp flow curvature demanded of the leakage flow at gap entry. The curvature is made more severe by the apparent attachement of the flow around the corner instead of immediately separating to increase the radius demanded of the flow. The low pressures are intensified by a depression in the suction corner and by the formation of a separation bubble in the clearance gap. The bubble creates a venturi action. The suction corner depression is due to the mainstream flow moving round the leakage and secondary vortices.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Francesco Bertini

Low pressure turbine airfoils of the present generation usually operate at subsonic conditions, with exit Mach numbers of about 0.6. To reduce the costs of experimental programs it can be convenient to carry out measurements in low speed tunnels in order to determine the cascades performance. Generally speaking, low speed tests are usually carried out on airfoils with modified shape, in order to compensate for the effects of compressibility. A scaling procedure for high-lift, low pressure turbine airfoils to be studied in low speed conditions is presented and discussed. The proposed procedure is based on the matching of a prescribed blade load distribution between the low speed airfoil and the actual one. Such a requirement is fulfilled via an Artificial Neural Network (ANN) methodology and a detailed parameterization of the airfoil. A RANS solver is used to guide the redesign process. The comparison between high and low speed profiles is carried out, over a wide range of Reynolds numbers, by using a novel three-equation, transition-sensitive, turbulence model. Such a model is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) with the Wilcox k–ω model and it has proven to be effective for transitional, separated-flow configurations of high-lift cascade flows.


Sign in / Sign up

Export Citation Format

Share Document