Pressure and Suction Surfaces Redesign for High-Lift Low-Pressure Turbines

2002 ◽  
Vol 124 (2) ◽  
pp. 161-166 ◽  
Author(s):  
P. Gonza´lez ◽  
I. Ulizar ◽  
R. Va´zquez ◽  
H. P. Hodson

Nowadays there is a big effort toward improving the low-pressure turbine efficiency even to the extent of penalizing other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface, or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behavior of both pressure and suction surfaces has been investigated for the case of a high-lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists of two different sets of experiments: the first one concluded an improved pressure surface definition, and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to midchord. The second profile is a hollow design with the same suction surface as the first one, but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile, but more aft loaded suction surface. The study is part of a wider ongoing research program covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90 percent of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended, as profile aft loading would not be a completely secure method for reducing losses.

Author(s):  
P. González ◽  
I. Ulizar ◽  
R. Vázquez ◽  
H. P. Hodson

Nowadays there is a big effort toward improving the low pressure turbine efficiency even to the extent of penalising other relevant design parameters. LP turbine efficiency influences SFC more than other modules in the engine. Most of the research has been oriented to reduce profile losses, modifying the suction surface, the pressure surface or the three-dimensional regions of the flow. To date, the pressure surface has received very little attention. The dependence of the profile losses on the behaviour of both pressure and suction surfaces has been investigated for the case of a high lift design that is representative of a modern civil engine LP turbine. The experimental work described in this paper consists on two different sets of experiments: the first one concluded an improved pressure surface definition and the second set was oriented to achieve further improvement in losses modifying the profile suction surface. Three profiles were designed and tested over a range of conditions. The first profile is a thin-solid design. This profile has a large pressure side separation bubble extending from near the leading edge to mid-chord. The second profile is a hollow design with the same suction surface as the first one but avoiding pressure surface separation. The third one is also a hollow design with the same pressure surface as the second profile but more aft loaded suction surface. The study is part of a wider on-going research programme covering the effects of the different design parameters on losses. The paper describes the experiments conducted in a low-speed linear cascade facility. It gathers together steady and unsteady loss measurements by wake traverse and surface pressure distributions for all the profiles. It is shown that thick profiles generate only around 90% of the losses of a thin-solid profile with the same suction surface. The results support the idea of an optimum axial position for the peak Mach number. Caution is recommended as profile aft loading would not be a completely secure method for reducing losses.


2007 ◽  
Vol 111 (1118) ◽  
pp. 257-266 ◽  
Author(s):  
R. J. Howell ◽  
K. M. Roman

This paper describes how it is possible to reduce the profile losses on ultra high lift low pressure (LP) turbine blade profiles with the application of selected surface roughness and wake unsteadiness. Over the past several years, an understanding of wake interactions with the suction surface boundary layer on LP turbines has allowed the design of blades with ever increasing levels of lift. Under steady flow conditions, ultra high lift profiles would have large (and possibly open) separation bubbles present on the suction side which result from the very high diffusion levels. The separation bubble losses produced by it are reduced when unsteady wake flows are present. However, LP turbine blades have now reached a level of loading and diffusion where profile losses can no longer be controlled by wake unsteadiness alone. The ultra high lift profiles investigated here were created by attaching a flap to the trailing edge of another blade in a linear cascade — the so called flap-test technique. The experimental set-up used in this investigation allows for the simulation of upstream wakes by using a moving bar system. Hotwire and hotfilm measurements were used to obtain information about the boundary-layer state on the suction surface of the blade as it evolved in time. Measurements were taken at a Reynolds numbers ranging between 100,000 and 210,000. Two types of ultra high lift profile were investigated; ultra high lift and extended ultra high lift, where the latter has 25% greater back surface diffusion as well as a 12% increase in lift compared to the former. Results revealed that distributed roughness reduced the size of the separation bubble with steady flow. When wakes were present, the distributed roughness amplified disturbances in the boundary layer allowing for more rapid wake induced transition to take place, which tended to eliminate the separation bubble under the wake. The extended ultra high lift profile generated only slightly higher losses than the original ultra high lift profile, but more importantly it generated 12% greater lift.


Author(s):  
Michele Marconcini ◽  
Filippo Rubechini ◽  
Roberto Pacciani ◽  
Andrea Arnone ◽  
Francesco Bertini

Low pressure turbine airfoils of the present generation usually operate at subsonic conditions, with exit Mach numbers of about 0.6. To reduce the costs of experimental programs it can be convenient to carry out measurements in low speed tunnels in order to determine the cascades performance. Generally speaking, low speed tests are usually carried out on airfoils with modified shape, in order to compensate for the effects of compressibility. A scaling procedure for high-lift, low pressure turbine airfoils to be studied in low speed conditions is presented and discussed. The proposed procedure is based on the matching of a prescribed blade load distribution between the low speed airfoil and the actual one. Such a requirement is fulfilled via an Artificial Neural Network (ANN) methodology and a detailed parameterization of the airfoil. A RANS solver is used to guide the redesign process. The comparison between high and low speed profiles is carried out, over a wide range of Reynolds numbers, by using a novel three-equation, transition-sensitive, turbulence model. Such a model is based on the coupling of an additional transport equation for the so-called laminar kinetic energy (LKE) with the Wilcox k–ω model and it has proven to be effective for transitional, separated-flow configurations of high-lift cascade flows.


2002 ◽  
Vol 124 (3) ◽  
pp. 385-392 ◽  
Author(s):  
R. J. Howell ◽  
H. P. Hodson ◽  
V. Schulte ◽  
R. D. Stieger ◽  
Heinz-Peter Schiffer ◽  
...  

This paper describes a detailed study into the unsteady boundary layer behavior in two high-lift and one ultra-high-lift Rolls-Royce Deutschland LP turbines. The objectives of the paper are to show that high-lift and ultra-high-lift concepts have been successfully incorporated into the design of these new LP turbine profiles. Measurements from surface mounted hot film sensors were made in full size, cold flow test rigs at the altitude test facility at Stuttgart University. The LP turbine blade profiles are thought to be state of the art in terms of their lift and design philosophy. The two high-lift profiles represent slightly different styles of velocity distribution. The first high-lift profile comes from a two-stage LP turbine (the BR710 cold-flow, high-lift demonstrator rig). The second high-lift profile tested is from a three-stage machine (the BR715 LPT rig). The ultra-high-lift profile measurements come from a redesign of the BR715 LP turbine: this is designated the BR715UHL LP turbine. This ultra-high-lift profile represents a 12 percent reduction in blade numbers compared to the original BR715 turbine. The results from NGV2 on all of the turbines show “classical” unsteady boundary layer behavior. The measurements from NGV3 (of both the BR715 and BR715UHL turbines) are more complicated, but can still be broken down into classical regions of wake-induced transition, natural transition and calming. The wakes from both upstream rotors and NGVs interact in a complicated manner, affecting the suction surface boundary layer of NGV3. This has important implications for the prediction of the flows on blade rows in multistage environments.


Author(s):  
Wei Li ◽  
Hua Ouyang ◽  
Zhao-hui Du

To give insight into the clocking effect and its influence on the wake transportation and its interaction, the unsteady three-dimensional flow through a 1.5-stage axial low pressure turbine is simulated numerically using a density-correction based, Reynolds-Averaged Navier-Stokes equations commercial CFD code. The 2nd stator clocking is applied over ten equal tangential positions. The results show that the harmonic blade number ratio is an important factor affecting the clocking effect. The clocking effect has a very small influence on the turbine efficiency in this investigation. The efficiency difference between the maximum and minimum configuration is nearly 0.1%. The maximum efficiency can be achieved when the 1st stator wake enters the 2nd stator passage near blade suction surface and its adjacent wake passes through the 2nd stator passage close to blade pressure surface. The minimum efficiency appears if the 1st stator wake impinges upon the leading edge of the 2nd stator and its adjacent wake of the 1st stator passed through the mid-channel in the 2nd stator.


2015 ◽  
Vol 138 (1) ◽  
Author(s):  
Jiahuan Cui ◽  
V. Nagabhushana Rao ◽  
Paul Tucker

Using a range of high-fidelity large eddy simulations (LES), the contrasting flow physics on the suction surface, pressure surface, and endwalls of a low-pressure turbine (LPT) blade (T106A) was studied. The current paper attempts to provide an improved understanding of the flow physics over these three zones under the influence of different inflow boundary conditions. These include: (a) the effect of wakes at low and high turbulence intensity on the flow at midspan and (b) the impact of the state of the incoming boundary layer on endwall flow features. On the suction surface, the pressure fluctuations on the aft portion significantly reduced at high freestream turbulence (FST). The instantaneous flow features revealed that this reduction at high FST (HF) is due to the dominance of “streak-based” transition over the “Kelvin–Helmholtz” (KH) based transition. Also, the transition mechanisms observed over the turbine blade were largely similar to those on a flat plate subjected to pressure gradients. On pressure surface, elongated vortices were observed at low FST (LF). The possibility of the coexistence of both the Görtler instability and the severe straining of the wakes in the formation of these elongated vortices was suggested. While this was true for the cases under low turbulence levels, the elongated vortices vanished at higher levels of background turbulence. At endwalls, the effect of the state of the incoming boundary layer on flow features has been demonstrated. The loss cores corresponding to the passage vortex and trailing shed vortex were moved farther from the endwall with a turbulent boundary layer (TBL) when compared to an incoming laminar boundary layer (LBL). Multiple horse-shoe vortices, which constantly moved toward the leading edge due to a low-frequency unstable mechanism, were captured.


2004 ◽  
Vol 127 (3) ◽  
pp. 479-488 ◽  
Author(s):  
Xue Feng Zhang ◽  
Howard Hodson

An experimental investigation of the combined effects of upstream unsteady wakes and surface trips on the boundary layer development on an ultra-high-lift low-pressure turbine blade, known as T106C, is described. Due to the large adverse pressure gradient, the incoming wakes are not strong enough to periodically suppress the large separation bubble on the smooth suction surface of the T106C blade. Therefore, the profile loss is not reduced as much as might be possible. The first part of this paper concerns the parametric study of the effect of surface trips on the profile losses to optimize the surface trip parameters. The parametric study included the effects of size, type, and location of the surface trips under unsteady flow conditions. The surface trips were straight cylindrical wires, straight rectangular steps, wavy rectangular steps, or wavy cylindrical wires. The second part studies the boundary layer development on the suction surface of the T106C linear cascade blade with and without the recommended surface trips to investigate the loss reduction mechanism. It is found that the selected surface trip does not induce transition immediately, but hastens the transition process in the separated shear layer underneath the wakes and between them. In this way, the combined effects of the surface trip and unsteady wakes further reduce the profile losses. This passive flow control method can be used over a relatively wide range of Reynolds numbers.


AIAA Journal ◽  
2010 ◽  
Vol 48 (11) ◽  
pp. 2465-2471 ◽  
Author(s):  
Mark McQuilling ◽  
Mitch Wolff ◽  
Sergey Fonov ◽  
Jim Crafton ◽  
Rolf Sondergaard

2020 ◽  
Vol 142 (2) ◽  
Author(s):  
Jiabin Li ◽  
Lucheng Ji ◽  
Ling Zhou

Abstract The blended blade and endwall (BBEW) contouring technology can adjust the dihedral angle between suction surface and endwall, thus reducing corner separation in compressors. Generally, the design of BBEW relies on the experiences, the effective design results may not be the optimal result. In this paper, an optimization approach based on the genetic algorithm (GA) for feature selection and parameter optimization of support vector machine (SVM) is used to obtain the optimal BBEW parameters in a compressor cascade. Based on the sensitivity analysis of the results, it is found that the maximum blended width and the axial position of the maximum blended width are the two most important design parameters. The experimental results show that the optimal BBEW cascade can stretch the spanwise area of the high loss region, and reduce the maximum value in it. The numerical studies were conducted to analyze the flow mechanism. It is shown that the BBEW cascade has a transverse pressure difference at the axial position of the maximum blended width, and magnitude of the pressure difference in proportion to the maximum blended width. The transverse pressure difference removes the low-energy fluid from the corner to the main flow, thus improving the corner separation.


2009 ◽  
Vol 132 (1) ◽  
Author(s):  
Zhao Qingjun ◽  
Du Jianyi ◽  
Wang Huishe ◽  
Zhao Xiaolu ◽  
Xu Jianzhong

In this paper, three-dimensional multiblade row unsteady Navier–Stokes simulations at a hot streak temperature ratio of 2.0 have been performed to reveal the effects of rotor tip clearance on the inlet hot streak migration characteristics in high pressure stage of a vaneless counter-rotating turbine. The numerical results indicate that the migration characteristics of the hot streak in the high pressure turbine rotor are dominated by the combined effects of secondary flow, buoyancy, and leakage flow in the rotor tip clearance. The leakage flow trends to drive the hotter fluid toward the blade tip on the pressure surface and to the hub on the suction surface. Under the effect of the leakage flow, even partial hotter fluid near the pressure surface is also driven to the rotor suction surface through the tip clearance. Compared with the case without rotor tip clearance, the heat load of the high pressure turbine rotor is intensified due to the effects of the leakage flow. And the results indicate that the leakage flow effects trend to increase the low pressure turbine rotor inlet temperature at the tip region. The air flow with higher temperature at the tip region of the low pressure turbine rotor inlet will affect the flow and heat transfer characteristics in the downstream low pressure turbine.


Sign in / Sign up

Export Citation Format

Share Document