An Experimental Arrangement for the Measurement of the Pressure Distribution on High Speed Rotating Blade Rows

Author(s):  
K. Leist

For several years past, the research staff of the Institute for Turbomachines of the Aachen Technical University has carried out measurements on rotating turbine blading. This program is part of a comprehensive effort directed toward the experimental investigation of the three-dimensional flow through axial-flow turbomachines.

1977 ◽  
Vol 99 (1) ◽  
pp. 167-175 ◽  
Author(s):  
R. Howells ◽  
B. Lakshminarayana

A relatively simple and rapid method for predicting the three-dimensional flow effects in axial flow turbomachinery was investigated. Although the two-dimensional cascade is a satisfactory approximation for the design and analysis of some types of turbo-machines, the flow through devices, such as propeller pumps and inducers, may deviate significantly. A three-dimensional lifting surface theory was used to predict the potential flow around blades, represented by line vortices and sources, spanning an annulus. A rotor was designed, built, and tested (with air as the test medium) for comparison with the theory. Static pressure distributions on a rotating blade were measured. The effect of blade dihedral on these pressures was also measured. Deviation from cascade predictions caused by the three-dimensional flow effects is found to be appreciable for propeller pumps. No theory was developed, but variation of the experimental blade pressure distributions caused by dihedral was found to be considerable.


1995 ◽  
Author(s):  
Y. Ohkita ◽  
H. Kodama ◽  
O. Nozaki ◽  
K. Kikuchi ◽  
A. Tamura

A series of numerical and experimental studies have been conducted to understand the mechanism of loss generation in a high speed compressor stator with inlet radial shear flow over the span. In this study, numerical simulation is extensively used to investigate the complex three-dimensional flow in the cascades and to interpret the phenomena appeared in the high speed compressor tests. It has been shown that the inlet radial shear flow generated by upstream rotor had a significant influence on the stator secondary flow, and consequently on the total pressure loss. Redesign of the stator aiming at the reduction of loss by controlling secondary flow has been carried out and the resultant performance recovery was successfully demonstrated both numerically and experimentally.


1982 ◽  
Vol 104 (4) ◽  
pp. 500-504 ◽  
Author(s):  
V. O’Brien

The two-dimensional interaction of a circular shear flow and a sector cavity flow is predicted by finite-difference solution of the governing biharmonic equation for steady Stokes planar flow. The location of the dividing streamline is a function of geometry, lying perhaps wholly within the cavity or bulging up into the circular annulus. Also pressure-driven axial flow through the annular configuration is predicted by numerical solution of the governing Poisson equation. The results can be combined with the planar solution to describe a steady three-dimensional flow field which will enhance laminar mixing.


1997 ◽  
Vol 119 (2) ◽  
pp. 169-175
Author(s):  
Y. Ohkita ◽  
H. Kodama ◽  
O. Nozaki ◽  
K. Kikuchi ◽  
A. Tamura

A series of numerical and experimental studies have been conducted to understand the mechanism of loss generation in a high-speed compressor stator with inlet radial shear flow over the span. In this study, numerical simulation is extensively used to investigate the complex three-dimensional flow in the cascades and to interpret the phenomena that appeared in the high-speed compressor tests. It has been shown that the inlet radial shear flow generated by the upstream rotor had a significant influence on the stator secondary flow, and consequently on the total pressure loss. Redesign of the stator aiming at the reduction of loss by controlling secondary flow has been carried out and the resultant performance recovery was successfully demonstrated both numerically and experimentally.


Author(s):  
W. Tabakoff ◽  
A. Hamed ◽  
M. F. Hussein

This paper describes the results from an investigation of the gas-particle flow trajectories, velocities and pressure distribution in an axial flow turbine stage. A gas-particle flow cascade tunnel and high-speed photographic techniques were used to conduct the experimental investigation. The pressure distribution on the blade surface was measured and compared with the theoretical analysis, the results exhibiting good agreement between the developed theory and experiment.


1980 ◽  
Vol 102 (3) ◽  
pp. 338-343
Author(s):  
C. F. Grainger

The three-dimensional flow through a cascade of twisted flat-plate blades is calculated using a computer program based on a finite-difference approximation to the method of characteristics. The relative flow is supersonic but the axial flow is subsonic. For two-dimensional flow under similar conditions, the inlet flow field is one of “unique-incidence,” the effect discussed by Starken (5) and others. The main purpose of the present work is to extend the understanding of this effect to three-dimensional flow. Important differences between the two and three-dimensional flow fields are explained in terms of the interaction between neighboring sections of the flow.


2015 ◽  
Vol 10 (2) ◽  
pp. JFST0013-JFST0013 ◽  
Author(s):  
Tinnapob PHENGPOM ◽  
Yasunari KAMADA ◽  
Takao MAEDA ◽  
Junsuke MURATA ◽  
Shogo NISHIMURA ◽  
...  

Sign in / Sign up

Export Citation Format

Share Document