scholarly journals Gas-Turbine Drives for a Fluid Catalytic-Cracking Unit

Author(s):  
James A. Boatright

This paper presents a unique application of two 14,200-hp gas turbines and their associated waste heat-recovery boilers in a refinery modernization program. It summarizes economics, design, and operating experience. Special emphasis is placed on three unusual features: (1) oversized starting turbines used as helpers; (2) control of two drivers with one governor; and (3) use of gas-turbine exhaust as combustion air, backed up by a forced-draft fan running at full speed against a closed damper.

Author(s):  
R. J. Swofford

Gas-turbine-driven generating facilities have been installed at the Houston refinery/chemical plant complex of Shell Oil Company to supply electric power to electrolytic cells on a new chlorine plant. The power plant consists of two gas turbines site rated at 15,500 hp, with 1900-hp helper steam turbines driving 3600-rpm generators. The waste-heat boilers used to recover heat from the gas turbine exhaust are equipped with duct burners for steam temperature control and feature two stages of economizer coils. This paper includes a description of the cycle and aspects relating to the initial operation of the equipment.


Author(s):  
V. L. Eriksen ◽  
J. M. Froemming ◽  
M. R. Carroll

Heat recovery boilers utilizing the exhaust from gas turbines continue to be viable as industrial cogeneration systems. This paper outlines the types of heat recovery boilers available for use with gas turbines (1–100 MW). It discusses the design and performance criteria for both unfired and supplementary fired gas turbine exhaust heat recovery boilers of single and multiple pressure levels. Equations to assist in energy balances are included along with design features of heat recovery system components. The economic incentive to achieve the maximum practical heat recovery versus the impact on boiler design and capital cost are examined and discussed. It is intended that the information presented in this paper will be of use to individuals who are not intimately familiar with gas turbine heat recovery systems so that they can better specify and evaluate potential systems.


2016 ◽  
Vol 17 (1) ◽  
pp. 22-31
Author(s):  
Meseret Nasir Reshid ◽  
Wan Mansor Wan Muhamad ◽  
Mohd Amin Abd Majid

Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


Author(s):  
Leonardo Pierobon ◽  
Rambabu Kandepu ◽  
Fredrik Haglind

With increasing incentives for reducing the CO2 emissions offshore, optimization of energy usage on offshore platforms has become a focus area. Most of offshore oil and gas platforms use gas turbines to support the electrical demand on the platform. It is common to operate a gas turbine mostly under part-load conditions most of the time in order to accommodate any short term peak loads. Gas turbines with flexibility with respect to fuel type, resulting in low turbine inlet and exhaust gas temperatures, are often employed. The typical gas turbine efficiency for an offshore application might vary in the range 20–30%. There are several technologies available for onshore gas turbines (and low/medium heat sources) to convert the waste heat into electricity. For offshore applications it is not economical and practical to have a steam bottoming cycle to increase the efficiency of electricity production, due to low gas turbine outlet temperature, space and weight restrictions and the need for make-up water. A more promising option for use offshore is organic Rankine cycles (ORC). Moreover, several oil and gas platforms are equipped with waste heat recovery units to recover a part of the thermal energy in the gas turbine off-gas using heat exchangers, and the recovered thermal energy acts as heat source for some of the heat loads on the platform. The amount of the recovered thermal energy depends on the heat loads and thus the full potential of waste heat recovery units may not be utilized. In present paper, a review of the technologies available for waste heat recovery offshore is made. Further, the challenges of implementing these technologies on offshore platforms are discussed from a practical point of view. Performance estimations are made for a number of combined cycles consisting of a gas turbine typically used offshore and organic Rankine cycles employing different working fluids; an optimal media is then suggested based on efficiency, weight and space considerations. The paper concludes with suggestions for further research within the field of waste heat recovery for offshore applications.


1998 ◽  
Vol 120 (07) ◽  
pp. 72-73 ◽  
Author(s):  
Michael Valent

This article reviews that twenty-first century passengers on the Royal Caribbean International and Celebrity Cruises are set to make history in style. Up to six of Royal Caribbean’s Voyager- and Millennium-class vessels will be the first cruise ships ever powered by General Electric’s gas turbines. In addition to reducing engine-room noise and vibration and cutting emissions, this propulsion system—a departure from the traditional diesel engine—will make it possible for ships to set sail with a reduced maintenance crew and smaller parts inventory. Royal Caribbean International currently operates a fleet of 12 ships. In the Royal Caribbean application, the GE gas turbine will be used to drive generators that will provide electricity to propeller motors. The steam turbine will recover heat from the gas turbine exhaust for other uses. This combined gas turbine and steam turbine integrated electric drive system represents a departure from diesel engines in more than one respect.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


Sign in / Sign up

Export Citation Format

Share Document