scholarly journals Gas Turbines Supply Power for Electrolytic Cells

Author(s):  
R. J. Swofford

Gas-turbine-driven generating facilities have been installed at the Houston refinery/chemical plant complex of Shell Oil Company to supply electric power to electrolytic cells on a new chlorine plant. The power plant consists of two gas turbines site rated at 15,500 hp, with 1900-hp helper steam turbines driving 3600-rpm generators. The waste-heat boilers used to recover heat from the gas turbine exhaust are equipped with duct burners for steam temperature control and feature two stages of economizer coils. This paper includes a description of the cycle and aspects relating to the initial operation of the equipment.

Author(s):  
James A. Boatright

This paper presents a unique application of two 14,200-hp gas turbines and their associated waste heat-recovery boilers in a refinery modernization program. It summarizes economics, design, and operating experience. Special emphasis is placed on three unusual features: (1) oversized starting turbines used as helpers; (2) control of two drivers with one governor; and (3) use of gas-turbine exhaust as combustion air, backed up by a forced-draft fan running at full speed against a closed damper.


Author(s):  
W. V. Hambleton

This paper represents a study of the overall problems encountered in large gas turbine exhaust heat recovery systems. A number of specific installations are described, including systems recovering heat in other than the conventional form of steam generation.


1974 ◽  
Author(s):  
Marv Weiss

A unique method for silencing heavy-duty gas turbines is described. The Switchback exhaust silencer which utilizes no conventional parallel baffles has at operating conditions measured attenuation values from 20 dB at 63 Hz to 45 dB at higher frequencies. Acoustic testing and analyses at both ambient and operating conditions are discussed.


1998 ◽  
Vol 120 (07) ◽  
pp. 72-73 ◽  
Author(s):  
Michael Valent

This article reviews that twenty-first century passengers on the Royal Caribbean International and Celebrity Cruises are set to make history in style. Up to six of Royal Caribbean’s Voyager- and Millennium-class vessels will be the first cruise ships ever powered by General Electric’s gas turbines. In addition to reducing engine-room noise and vibration and cutting emissions, this propulsion system—a departure from the traditional diesel engine—will make it possible for ships to set sail with a reduced maintenance crew and smaller parts inventory. Royal Caribbean International currently operates a fleet of 12 ships. In the Royal Caribbean application, the GE gas turbine will be used to drive generators that will provide electricity to propeller motors. The steam turbine will recover heat from the gas turbine exhaust for other uses. This combined gas turbine and steam turbine integrated electric drive system represents a departure from diesel engines in more than one respect.


Author(s):  
Lothar Bachmann ◽  
W. Fred Koch

The purpose of this paper is to update the industry on the evolutionary steps that have been taken to address higher requirements imposed on the new generation combined cycle gas turbine exhaust ducting expansion joints, diverter and damper systems. Since the more challenging applications are in the larger systems, we shall concentrate on sizes from nine (9) square meters up to forty (40) square meters in ducting cross sections. (Reference: General Electric Frame 5 through Frame 9 sizes.) Severe problems encountered in gas turbine applications for the subject equipment are mostly traceable to stress buckling caused by differential expansion of components, improper insulation, unsuitable or incompatible mechanical design of features, components or materials, or poor workmanship. Conventional power plant expansion joints or dampers are designed for entirely different operating conditions and should not be applied in gas turbine applications. The sharp transients during gas turbine start-up as well as the very high temperature and high mass-flow operation conditions require specific designs for gas turbine application.


1990 ◽  
Vol 112 (1) ◽  
pp. 80-85
Author(s):  
F. Fleischer ◽  
C. Koerner ◽  
J. Mann

Following repeated cases of damage caused to exhaust silencers located directly beyond gas turbine diffusers, this paper reports on investigations carried out to determine possible remedies. In all instances, an uneven exhaust gas flow distribution was found. The company’s innovative approach to the problem involved constructing a scale model of a complete gas turbine exhaust system and using it for flow simulation purposes. It was established for the first time that, subject to certain conditions, the results of tests conducted on a model can be applied to the actual turbine exhaust system. It is shown that when an unfavorable duct arrangement might produce an uneven exhaust flow, scale models are useful in the development of suitable flow-distributing devices.


Author(s):  
Werner F. Malewski ◽  
Günther M. Holldorff

Using heat energy from the tail-end of gas turbine exhaust, an ammonia absorption refrigeration system can precool the inlet air to a temperature slightly above the freezing point of the air humidity. The concept is described and shows how it indicates a significant increase of gas turbine power output, depending on ambient conditions.


Author(s):  
V. Nayyeri ◽  
P. Asna Ashary

Repowering is increasing efficiency and output power of an existing steam power plants by integration them with gas turbine. Several approaches are proposed for repowering regards to condition of existing power plants. One of those approaches which provides opportunity for existing boiler reusing is windbox repowering. In this method, one or several gas turbines are installed near the existing steam unit and the exhaust of gas turbines is used as preheated combustion air for boiler. The main difficulty in integration of gas turbine and boiler is decreasing flame temperature in supplementary combustion of boiler due to low oxygen content of gas turbine exhaust compared with fresh air and its effect on heat transfer process especially in radiative sections. When advanced gas turbines are used in windbox repowering, the fresh air should be used for increasing oxygen due to low oxygen percent. In this study, the effect of using fresh air in wind box repowering will be investigated and two main arrangements, preheating and not preheating of fresh air will be compared. This study shows the advantages of using preheated air for mixing with gas turbine exhaust when advanced gas turbines are used for windbox repowering.


1982 ◽  
Vol 104 (1) ◽  
pp. 44-50 ◽  
Author(s):  
S. C. Hunter

Sulfur trioxide in gas turbine exhaust contributes to particulate emissions; reduction of this compound is a means for control of particulate emissions. The chemical kinetics of SO3 formation were analyzed for a large stationary gas turbine. The source of SO3 is the reaction of SO2 with oxygen atoms in the downstream end of the combustor primary zone. The primary zone produces SO3 levels of 1 to 2 percent of total SOx. SO3 increases above 1 to 2 percent during air dilution from an equivalence ratio of about 0.5 to 0.35; formation times are on the order of 1 to 10 ms. Reduction of primary zone air flow and more rapid dilution air mixing were identified as means for SO3 reduction. Dilution air mixing in 1 ms was identified as an objective; but would be a difficult task with current combustor designs.


Author(s):  
R. W. Jones ◽  
A. C. Shoults

This paper presents details of three large gas turbine installations in the Freeport, Texas, power plants of the Dow Chemical Company. The general plant layout, integration of useful outputs, economic factors leading to the selection of these units, and experiences during startup and operation will be reviewed. All three units operate with supercharging fan, evaporative cooler, and static excitation. Two of the installations are nearly identical 32,000-kw gas turbines operating in a combined cycle with a supplementary fired 1,500,000-lb/hr boiler and a 50,000-kw noncondensing steam turbine. The other installation is a 43,000-kw gas turbine and a 20,000-kw starter-helper steam turbine on the same shaft. The gas turbine exhaust is used to supply heated feedwater for four existing boilers.


Sign in / Sign up

Export Citation Format

Share Document