scholarly journals Environment Problems Affecting Helicopter Engine Operation

1970 ◽  
Author(s):  
J. C. Arribat

One of the advantages of the helicopter is to be able to undertake in roles, which for other vehicles would prove to be difficult and even impractical. When performing flying crane duties, rescue flights or military operations, it has to fly very close to the ground or the sea, land on unprepared fields and this, in open country, in the mountains or in the desert. It is, relative to the fixed wing aircraft, what the “Jeep” is to a passenger car, and due to this, it has more acute environment problems than other types of aircraft. The engines, being one of the more vulnerable components, must be protected against the attack of the environment. This subject being very large, it will be limited to three environment problems which are the most important for helicopter engines: salt spray, dust and ice. The solutions — adopted by Sud Aviation, in close collaboration with Turbomeca, for its helicopters — are presented. The case of piston engines, we shall deal with gas turbine engines only.

Author(s):  
Craig R. Davison ◽  
A. M. Birk

A computer model of a gas turbine auxiliary power unit was produced to develop techniques for fault diagnosis and prediction of remaining life in small gas turbine engines. Due to the relatively low capital cost of small engines it is important that the techniques have both low capital and operating costs. Failing engine components were identified with fault maps, and an algorithm was developed for predicting the time to failure, based on the engine’s past operation. Simulating daily engine operation over a maintenance cycle tested the techniques for identification and prediction. The simulation included daily variations in ambient conditions, operating time, load, engine speed and operating environment, to determine the amount of degradation per day. The algorithm successfully adapted to the daily changes and corrected the operating point back to standard conditions to predict the time to failure.


Author(s):  
Matthew G. Hoffman ◽  
Richard J. DeCorso ◽  
Dennis M. Russom

The U.S. Navy has experienced problems with liquid fuel nozzles used on the Rolls Royce (formerly Allison) 501K series marine gas turbine engines. The 501K engines used by the U.S. Navy power Ship Service Gas Turbine Generators (SSGTGs) on a number of destroyer and cruiser class ships. Over roughly the last 25 years, 3 different nozzle designs have been employed, the latest and current nozzle being a piloted air blast design. The primary failure modes of these designs were internal fuel passage coking and external carbon deposits. The current piloted air blast design has a hard time replacement requirement of 1500 hours. This life is considered unacceptable. To improve fuel nozzle life, the Navy and Turbine Fuel Technologies (formerly Delavan) teamed in a fast track program to develop a new fuel nozzle with a target life of 5000 hours and 500 starts. As a result, an air assist/air blast nozzle was developed and delivered in approximately 6 months. In addition to the nozzle itself, a system was developed to provide assist air to the fuel nozzles to help atomize the fuel for better ignition. Nozzle sets and air assist systems have been delivered and tested at the NSWC Philadelphia LBES (Land Based Engineering Site). In addition, nozzle sets have been installed aboard operating ships for in-service evaluations. During the Phase one evaluation (July 2000 to June 2001) aboard USS Porter (DDG 78) a set of nozzles accumulated over 3500 hours of trouble free operation, indicating the target of 5000 hours is achievable. As of this writing these nozzles have in excess of 5700 hours. The improvements in nozzle life provided by the new fuel nozzle design will result in cost savings through out the life cycle of the GTGS. In fact, the evaluation nozzles are already improving engine operation and reliability even before the nozzles’ official fleet introduction. This paper describes the fuel nozzle and air assist system development program and results of OEM, LBES and fleet testing.


2018 ◽  
Vol 220 ◽  
pp. 03001
Author(s):  
Andrey Tkachenko ◽  
Ilia Krupenich ◽  
Evgeny Filinov ◽  
Yaroslav Ostapyuk

This article describes the multi-level approach to developing the virtual testing rig of gas turbine engines and power plants. The described virtual rig is developed on the basis of computer-aided system of thermogasdynamic calculations and analysis ASTRA, developed at Samara National Research University. Existing testing rig is widely used in educational process to supply the students’ research activities with the information on engine operation in a variety of ambient and flight conditions during transients. An approach to upgrading the virtual testing rig is proposed. The described modifications would provide the capabilities to solve more complex research tasks, including investigation of influence of geometry of engine elements on the engine characteristics, multidisciplinary investigations, identification of engine models using the results of experimental investigations and identification of sources of engine deficiencies during the development phase of engine designing.


2017 ◽  
Vol 20 (K5) ◽  
pp. 30-36
Author(s):  
Manh Duc Vu ◽  
Thang Huy Ha ◽  
Thang Trong Dao ◽  
Kien Trung Nguyen

Gas turbine engines are widely used in aviation and naval ships for their compactness and high mobility. In Vietnam, the researches and investigations for this type of engine are less interested. In this paper, the authors present methods of modeling and calculating gas turbine thermodynamic cycle by using the General Electric software – GateCycleTM. The results can be used for the study of gas turbine engines and for engine operation.


2021 ◽  
pp. 23-33
Author(s):  
A.V. Sviridov ◽  
◽  
A.N. Afanasyev-Khodykin ◽  
I.A. Galushka ◽  
◽  
...  

Presents the results of work on assessing the corrosion resistance of brazed joints of corrosion-resistant steels used in the manufacture of fuel manifolds for gas turbine engines in a salt spray chamber. The main types of corrosion damage of brazed joints made with brazing alloys of various types (based on copper and nickel) have been identified. The influence of the type of brazing alloy and the grade of the brazed materials on the nature of corrosion damage to brazed joints is determined. Based on the research results, assumptions have been made about the mechanism of occurrence and development of corrosion damage in brazed joints of various materials.


2021 ◽  
Vol 13 (9) ◽  
pp. 168781402110433
Author(s):  
Amin Changizi ◽  
Ion Stiharu ◽  
Bilal Outirba ◽  
Patrick Hendrick

Presented herein is a mathematical model employing differential equations formulation for brush seals used in gas turbine engines. These components are used to seal the bearing chamber from the environment and reduce the loss of lubricant in the atmosphere, ensuring a MTBR long enough to have required the change the seals only during the engine overhaul operation. The model assumes a single curved bristle loop in the form of a curved-bridge beam subjected to the influences of complex external loads (static and dynamic). Further, a model for clustered bristles is proposed. Specifically, the static forces acting on the curved-bridge beam include the weight of the oil capillary attached to the beam, the weight of the beam itself, the capillary force developed between the surfaces of the bristles in the brush and the temperature gradient. The dynamic forces include the leakage oil pressure and the rotation of the shaft. This complex loading induces a nonlinear large deflection on the curved-bridge beam. Also, the temperature gradient present on the bristles during the gas turbine engine operation generates a change in the geometry of the beam and in the magnitude of the forces acting on the bristles modeled as beams. In the present model, the weights are assumed as uniformly distributed forces on the surface of the beam while the capillary forces and the force generated by the rotating shaft are considered to be non-uniform. The equation expressing the curvature of the beam under general loading force is developed and one can choose the appropriate method of solving the generated differential equation after the expression of the general force is defined. Hence, the ordinary differential equation describing the nonlinear large deflection of the curved-bridge beam will be derived using general nonlinear elasticity theory.


2021 ◽  
pp. 26-31
Author(s):  
A. V. Popov ◽  
A. A. Romanov

One of the reasons for the early decommissioning of gas turbine engines (before the specified resources and service life are depleted) is the occurrence of unstable operating modes, namely surge. Surge is a violation of the stable operation of gas turbine engines, due to the occurrence of longitudinal self-oscillations of the flow in the entire airgas path of the gas turbine engine, resulting from the loss of dynamic stability of the flow, accompanied by a sharp drop in thrust and powerful vibration that can destroy the engine. An acoustic method for diagnosing the presurge state of gas turbine engines has been developed, based on an assessment of the change in the distribution of the amplitudes of a vibroacoustic signal, which is characterized by the use of an invariant characterizing the normal distribution of random variables, which makes it possible to quickly assess the presurge state regardless of the type, size and history of engine operation, which makes this method universal. The use of the developed acoustic method for determining the presurge state of gas turbine engines makes it possible to avoid the need for noise filtering, which at the present stage of development of presurge condition diagnostics systems based on vibration analysis plays a huge role. To implement the developed acoustic method, a hardware-software complex was created. The antisurge system can be used in automatic mode by installing hazardous and critically dangerous zones in the program for informative parameters and invariants characterizing the occurrence of surge.


Author(s):  
Upul DeSilva ◽  
Richard H. Bunce ◽  
Joshua M. Schmitt ◽  
Heiko Claussen

Siemens has developed a novel approach for measuring the process gas temperature leaving the power turbine in their heavy industrial gas turbine engines using active acoustic tomography. Siemens has deployed this measurement technique on two test engines of different power ranges and different combustion and exhaust duct configurations. These engine tests have demonstrated that this technology is effective and robust. All working parts are outside the heat effective zone so, unlike the traditional intrusive point temperature measurement method, sensors are easily replaceable during engine operation. Bulk exhaust temperature is used in performance testing of industrial gas turbine engines and is a critical measurement for power production. Temperature distribution information in the exhaust plane is valuable for safe engine operation and can be used to prevent lifetime reduction due to hotspots or to monitor the burner flames. Siemens used broadband sound sources for the previously reported acoustic pyrometer experiments. This paper extends this work utilizing sparse time-frequency encoded sources to improve the robustness of time of flight estimation in the high noise area of the turbine exhaust. The goal is to achieve a higher signal to noise ratio between the emitted and received signals by focusing the acoustic energy into narrow time-frequency bins that are little affected by turbine noise. Different acoustic patterns are tested and compared to the previously used broadband source both in laboratory experiments and a turbine test bed. The patterns are evaluated regarding their noise robustness, sound pressure levels and narrow autocorrelation which are important for accurate time of flight estimation in high noise environments.


1997 ◽  
Vol 28 (7-8) ◽  
pp. 536-542
Author(s):  
A. A. Khalatov ◽  
I. S. Varganov

Sign in / Sign up

Export Citation Format

Share Document