scholarly journals Gas Turbine Testing on Naval Distillate Fuel

Author(s):  
J. S. Siemietkowski

A Pratt & Whitney FT4A Marine Gas Turbine Engine rated at 22,600 hp, 3600 rpm was run at the Naval Ship Engineering Center, Philadelphia Division for 1000 hr. Fuel used was naval distillate having a vanadium level of 0.5 ppm. Basically there was no problem with engine operation on naval distillate when compared to diesel fuel. The smoke level was barely visible at high powers. Coalescent fuel filters are a problem due to their relatively short (100–130 hr) life. The corrosion rate was accelerated when compared to navy diesel fuel. The fuel parameter suspect is vanadium, however other parameters may be at fault. Additional efforts are required into definitely determining the cause of accelerated corrosion and also into optimizing nozzle guide vane and turbine blade base materials and coatings.

2014 ◽  
Vol 14 (5) ◽  
pp. 578-587 ◽  
Author(s):  
R. K. Mishra ◽  
Johney Thomas ◽  
K. Srinivasan ◽  
Vaishakhi Nandi ◽  
Raghavendra Bhat

2017 ◽  
Vol 0 (0) ◽  
Author(s):  
R K Mishra ◽  
Prashant Kumar ◽  
K Rajesh ◽  
C R Das ◽  
Ganapathi Sharma ◽  
...  

AbstractPack aluminization of high pressure turbine nozzle guide vane of an aero gas turbine engine has been carried out following a well defined systematic procedure. The process parameters are first optimized on dummy vanes and optimized process is followed for the actual vanes for evaluation and testing. Visual and binocular examination followed by metallurgical evaluation have been carried out to validate the process and to establish the adequacy and correctness of the coating. The coated vanes are then evaluated through engine level tests for performance and durability. The results of engine level tests and inspection post accelerated mission test cycles ensure that the vanes with aluminide coating can withstand severe engine operating cycles without any damage or failure which would otherwise would have happened without the coating. The condition of vanes post endurance test is also an indication of enhanced life of the vanes with coating.


2000 ◽  
Vol 123 (2) ◽  
pp. 258-265 ◽  
Author(s):  
D. A. Rowbury ◽  
M. L. G. Oldfield ◽  
G. D. Lock

An empirical means of predicting the discharge coefficients of film cooling holes in an operating engine has been developed. The method quantifies the influence of the major dimensionless parameters, namely hole geometry, pressure ratio across the hole, coolant Reynolds number, and the freestream Mach number. The method utilizes discharge coefficient data measured on both a first-stage high-pressure nozzle guide vane from a modern aero-engine and a scale (1.4 times) replica of the vane. The vane has over 300 film cooling holes, arranged in 14 rows. Data was collected for both vanes in the absence of external flow. These noncrossflow experiments were conducted in a pressurized vessel in order to cover the wide range of pressure ratios and coolant Reynolds numbers found in the engine. Regrettably, the proprietary nature of the data collected on the engine vane prevents its publication, although its input to the derived correlation is discussed. Experiments were also conducted using the replica vanes in an annular blowdown cascade which models the external flow patterns found in the engine. The coolant system used a heavy foreign gas (SF6 /Ar mixture) at ambient temperatures which allowed the coolant-to-mainstream density ratio and blowing parameters to be matched to engine values. These experiments matched the mainstream Reynolds and Mach numbers and the coolant Mach number to engine values, but the coolant Reynolds number was not engine representative (Rowbury, D. A., Oldfield, M. L. G., and Lock, G. D., 1997, “Engine-Representative Discharge Coefficients Measured in an Annular Nozzle Guide Vane Cascade,” ASME Paper No. 97-GT-99, International Gas Turbine and Aero-Engine Congress & Exhibition, Orlando, Florida, June 1997; Rowbury, D. A., Oldfield, M. L. G., Lock, G. D., and Dancer, S. N., 1998, “Scaling of Film Cooling Discharge Coefficient Measurements to Engine Conditions,” ASME Paper No. 98-GT-79, International Gas Turbine and Aero-Engine Congress & Exhibition, Stockholm, Sweden, June 1998). A correlation for discharge coefficients in the absence of external crossflow has been derived from this data and other published data. An additive loss coefficient method is subsequently applied to the cascade data in order to assess the effect of the external crossflow. The correlation is used successfully to reconstruct the experimental data. It is further validated by successfully predicting data published by other researchers. The work presented is of considerable value to gas turbine design engineers as it provides an improved means of predicting the discharge coefficients of engine film cooling holes.


2002 ◽  
Vol 124 (3) ◽  
pp. 508-516 ◽  
Author(s):  
M. D. Barringer ◽  
O. T. Richard ◽  
J. P. Walter ◽  
S. M. Stitzel ◽  
K. A. Thole

The flow field exiting the combustor in a gas turbine engine is quite complex considering the presence of large dilution jets and complicated cooling schemes for the combustor liner. For the most part, however, there has been a disconnect between the combustor and turbine when simulating the flow field that enters the nozzle guide vanes. To determine the effects of a representative combustor flow field on the nozzle guide vane, a large-scale wind tunnel section has been developed to simulate the flow conditions of a prototypical combustor. This paper presents experimental results of a combustor simulation with no downstream turbine section as a baseline for comparison to the case with a turbine vane. Results indicate that the dilution jets generate turbulence levels of 15–18% at the exit of the combustor with a length scale that closely matches that of the dilution hole diameter. The total pressure exiting the combustor in the near-wall region neither resembles a turbulent boundary layer nor is it completely uniform putting both of these commonly made assumptions into question.


Author(s):  
Arash Farahani ◽  
Peter Childs

Strip seals are commonly used to prevent or limit leakage flows between nozzle guide vanes (NGV) and other gas turbine engine components that are assembled from individual segments. Leakage flow across, for example, a nozzle guide vane platform, leads to increased demands on the gas turbine engine internal flow system and a rise in specific fuel consumption (SFC). Careful attention to the flow characteristics of strip seals is therefore necessary. The very tight tolerances associated with strip seals provides a particular challenge to their characterisation. This paper reports the validation of CFD modelling for the case of a strip seal under very carefully controlled conditions. In addition, experimental comparison of three types of strip seal design, straight, arcuate, and cloth, is presented. These seals are typical of those used by competing manufacturers of gas turbine engines. The results show that the straight seal provides the best flow sealing performance for the controlled configuration tested, although each design has its specific merits for a particular application.


1988 ◽  
Vol 110 (1) ◽  
pp. 88-93 ◽  
Author(s):  
R. M. Watt ◽  
J. L. Allen ◽  
N. C. Baines ◽  
J. P. Simons ◽  
M. George

The effect of thermal barrier coating surface roughness on the aerodynamic performance of gas turbine aerofoils has been investigated for the case of a profile typical of current first-stage nozzle guide vane design. Cascade tests indicate a potential for significant extra loss, depending on Reynolds number, due to thermal barrier coating in its “as-sprayed” state. In this situation polishing coated vanes is shown to be largely effective in restoring their performance. The measurements also suggest a critical low Reynolds number below which the range of roughness tested has no effect on cascade efficiency. Transition detection involved a novel use of thin-film anemometers painted and fired onto the TBC surfaces.


Sign in / Sign up

Export Citation Format

Share Document